Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888241046> ?p ?o ?g. }
- W2888241046 endingPage "706" @default.
- W2888241046 startingPage "690" @default.
- W2888241046 abstract "Ensemble data assimilation methods are among the most successful techniques for assisted history matching. However, these methods suffer from sampling errors caused by the limited number of ensemble members employed in practical applications. A typical consequence of sampling errors is an excessive loss of ensemble variance. In practice, the posterior ensemble tends to underestimate the uncertainty range in the parameter values and production predictions. Distance-based localization is the standard method for mitigating sampling errors in ensemble data assimilation. A properly designed localization matrix works remarkably well to improve the estimate of gridblock properties such as porosity and permeability. However, field history-matching problems also include non-local model parameters, i.e., parameters with no spatial location. Examples of non-local parameters include relative permeability curves, fluid contacts, global property multipliers, among others. In these cases, we cannot use distance-based localization. This paper presents an investigation on several methods proposed in the literature that can be applied to non-local model parameters to mitigate erroneous loss of ensemble variance. We use a small synthetic history-matching problem to evaluate the performance of the methods. For this problem, we were able to compute a reference solution with a very large ensemble. We compare the methods mainly in terms of the preservation of the ensemble variance without compromising the ability of matching the observed data. We also analyse the robustness and difficulty to select proper configurations for each method." @default.
- W2888241046 created "2018-08-31" @default.
- W2888241046 creator A5031228580 @default.
- W2888241046 creator A5047078732 @default.
- W2888241046 creator A5053643611 @default.
- W2888241046 date "2019-01-01" @default.
- W2888241046 modified "2023-10-18" @default.
- W2888241046 title "Methods to mitigate loss of variance due to sampling errors in ensemble data assimilation with non-local model parameters" @default.
- W2888241046 cites W1781165020 @default.
- W2888241046 cites W1935117257 @default.
- W2888241046 cites W1970847893 @default.
- W2888241046 cites W1975480309 @default.
- W2888241046 cites W1976584025 @default.
- W2888241046 cites W1978883615 @default.
- W2888241046 cites W1987308763 @default.
- W2888241046 cites W1989931226 @default.
- W2888241046 cites W2012052869 @default.
- W2888241046 cites W2018353504 @default.
- W2888241046 cites W2023243769 @default.
- W2888241046 cites W2023669272 @default.
- W2888241046 cites W2035050240 @default.
- W2888241046 cites W2040655229 @default.
- W2888241046 cites W2043654662 @default.
- W2888241046 cites W2046372107 @default.
- W2888241046 cites W2058488613 @default.
- W2888241046 cites W2072631273 @default.
- W2888241046 cites W2081182050 @default.
- W2888241046 cites W2083753356 @default.
- W2888241046 cites W2084913894 @default.
- W2888241046 cites W2103553931 @default.
- W2888241046 cites W2115322479 @default.
- W2888241046 cites W2117009567 @default.
- W2888241046 cites W2123940107 @default.
- W2888241046 cites W2129835183 @default.
- W2888241046 cites W2132600099 @default.
- W2888241046 cites W2146803308 @default.
- W2888241046 cites W2147119488 @default.
- W2888241046 cites W2158987262 @default.
- W2888241046 cites W2167394762 @default.
- W2888241046 cites W2169146757 @default.
- W2888241046 cites W2173190456 @default.
- W2888241046 cites W2174784159 @default.
- W2888241046 cites W2179584279 @default.
- W2888241046 cites W2180946617 @default.
- W2888241046 cites W2272241597 @default.
- W2888241046 cites W2442014412 @default.
- W2888241046 cites W2802033629 @default.
- W2888241046 cites W3100417316 @default.
- W2888241046 cites W3104223502 @default.
- W2888241046 doi "https://doi.org/10.1016/j.petrol.2018.08.056" @default.
- W2888241046 hasPublicationYear "2019" @default.
- W2888241046 type Work @default.
- W2888241046 sameAs 2888241046 @default.
- W2888241046 citedByCount "15" @default.
- W2888241046 countsByYear W28882410462019 @default.
- W2888241046 countsByYear W28882410462020 @default.
- W2888241046 countsByYear W28882410462021 @default.
- W2888241046 countsByYear W28882410462022 @default.
- W2888241046 countsByYear W28882410462023 @default.
- W2888241046 crossrefType "journal-article" @default.
- W2888241046 hasAuthorship W2888241046A5031228580 @default.
- W2888241046 hasAuthorship W2888241046A5047078732 @default.
- W2888241046 hasAuthorship W2888241046A5053643611 @default.
- W2888241046 hasConcept C104317684 @default.
- W2888241046 hasConcept C105795698 @default.
- W2888241046 hasConcept C106131492 @default.
- W2888241046 hasConcept C11413529 @default.
- W2888241046 hasConcept C119898033 @default.
- W2888241046 hasConcept C121332964 @default.
- W2888241046 hasConcept C121955636 @default.
- W2888241046 hasConcept C124101348 @default.
- W2888241046 hasConcept C126255220 @default.
- W2888241046 hasConcept C140779682 @default.
- W2888241046 hasConcept C144133560 @default.
- W2888241046 hasConcept C153294291 @default.
- W2888241046 hasConcept C154945302 @default.
- W2888241046 hasConcept C159985019 @default.
- W2888241046 hasConcept C165064840 @default.
- W2888241046 hasConcept C185592680 @default.
- W2888241046 hasConcept C192562407 @default.
- W2888241046 hasConcept C196083921 @default.
- W2888241046 hasConcept C204323151 @default.
- W2888241046 hasConcept C24552861 @default.
- W2888241046 hasConcept C31972630 @default.
- W2888241046 hasConcept C33923547 @default.
- W2888241046 hasConcept C41008148 @default.
- W2888241046 hasConcept C45942800 @default.
- W2888241046 hasConcept C55493867 @default.
- W2888241046 hasConcept C63479239 @default.
- W2888241046 hasConceptScore W2888241046C104317684 @default.
- W2888241046 hasConceptScore W2888241046C105795698 @default.
- W2888241046 hasConceptScore W2888241046C106131492 @default.
- W2888241046 hasConceptScore W2888241046C11413529 @default.
- W2888241046 hasConceptScore W2888241046C119898033 @default.
- W2888241046 hasConceptScore W2888241046C121332964 @default.
- W2888241046 hasConceptScore W2888241046C121955636 @default.
- W2888241046 hasConceptScore W2888241046C124101348 @default.
- W2888241046 hasConceptScore W2888241046C126255220 @default.