Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888313647> ?p ?o ?g. }
- W2888313647 endingPage "1094" @default.
- W2888313647 startingPage "1072" @default.
- W2888313647 abstract "Solar thermal energy is widely recognized as one of the most important renewable energy resources. However, in high latitudes, due to various climatic and mismatch challenges, such solar district heating networks are difficult to implement. The objective of the paper is to optimize and compare two different design layouts and control strategies for solar district heating systems in Finnish conditions. The two different designs proposed are a centralized and a semi-decentralized solar district heating system. The centralized system consists of two centralized short-term tanks operating at different temperature levels charged by a solar collector and heat pumps. Borehole thermal energy storage is also charged via these two centralized tanks. In contrast, the semi-decentralized system consists of one centralized low temperature tank charged by a solar collector and a borehole thermal energy storage and decentralized high temperature tank charged by an individual heat pump in each house. In this case, borehole thermal energy storage is charged only by the centralized warm tank. These systems are designed using the dynamic simulation software TRNSYS for Finnish conditions. Later on, multi-objective optimization is carried out with a genetic algorithm using the MOBO (Multi-objective building optimizer) optimization tool, where two objectives, i.e. purchased electricity and life cycle costs, are minimized. Various design variables are considered, which included both component sizes and control parameters as inputs to the optimization. The optimization results show that in terms of life cycle cost and purchased electricity, the decentralized system clearly outperforms the centralized system. With a similar energy performance, the reduction in life cycle cost is up to 35% for the decentralized system. Both systems can achieve close to 90% renewable energy fraction. These systems are also sensitive to the prices. Furthermore, the results show that the solar thermal collector area and seasonal storage volume can be reduced in a decentralized system to reduce the cost compared to a centralized system. The losses in the centralized system are 40–12% higher compared to the decentralized system. The results also show that in both systems, high performance is achieved when the borehole storage is wider with less depth, as it allows better direct utilization of seasonally stored heat. The system layout and controls varied the performance and life cycle cost; therefore it is essential to consider these when implementing such systems." @default.
- W2888313647 created "2018-08-31" @default.
- W2888313647 creator A5005754499 @default.
- W2888313647 creator A5066430538 @default.
- W2888313647 creator A5086213015 @default.
- W2888313647 date "2018-11-01" @default.
- W2888313647 modified "2023-09-26" @default.
- W2888313647 title "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system" @default.
- W2888313647 cites W1613936688 @default.
- W2888313647 cites W1905488878 @default.
- W2888313647 cites W1965012593 @default.
- W2888313647 cites W1966830175 @default.
- W2888313647 cites W1972617387 @default.
- W2888313647 cites W1978350545 @default.
- W2888313647 cites W1979276453 @default.
- W2888313647 cites W1984069453 @default.
- W2888313647 cites W1995068274 @default.
- W2888313647 cites W1996633354 @default.
- W2888313647 cites W2004923520 @default.
- W2888313647 cites W2007256368 @default.
- W2888313647 cites W2011629800 @default.
- W2888313647 cites W2021650628 @default.
- W2888313647 cites W2034435719 @default.
- W2888313647 cites W2055196576 @default.
- W2888313647 cites W2055786256 @default.
- W2888313647 cites W2056821640 @default.
- W2888313647 cites W2067512920 @default.
- W2888313647 cites W2109402703 @default.
- W2888313647 cites W2113408001 @default.
- W2888313647 cites W2126105956 @default.
- W2888313647 cites W2158307930 @default.
- W2888313647 cites W2175635842 @default.
- W2888313647 cites W2198816439 @default.
- W2888313647 cites W2262860232 @default.
- W2888313647 cites W2285190057 @default.
- W2888313647 cites W2300982918 @default.
- W2888313647 cites W2306898755 @default.
- W2888313647 cites W2308826725 @default.
- W2888313647 cites W2419487185 @default.
- W2888313647 cites W2499929211 @default.
- W2888313647 cites W2515827428 @default.
- W2888313647 cites W2515852594 @default.
- W2888313647 cites W2527494543 @default.
- W2888313647 cites W2588292912 @default.
- W2888313647 cites W2620601560 @default.
- W2888313647 cites W2726878103 @default.
- W2888313647 cites W2728658267 @default.
- W2888313647 cites W2744063074 @default.
- W2888313647 cites W2767085308 @default.
- W2888313647 cites W2776184428 @default.
- W2888313647 cites W2791258748 @default.
- W2888313647 cites W2793677862 @default.
- W2888313647 cites W2800241146 @default.
- W2888313647 cites W2810743283 @default.
- W2888313647 cites W2207671820 @default.
- W2888313647 doi "https://doi.org/10.1016/j.apenergy.2018.08.064" @default.
- W2888313647 hasPublicationYear "2018" @default.
- W2888313647 type Work @default.
- W2888313647 sameAs 2888313647 @default.
- W2888313647 citedByCount "40" @default.
- W2888313647 countsByYear W28883136472019 @default.
- W2888313647 countsByYear W28883136472020 @default.
- W2888313647 countsByYear W28883136472021 @default.
- W2888313647 countsByYear W28883136472022 @default.
- W2888313647 countsByYear W28883136472023 @default.
- W2888313647 crossrefType "journal-article" @default.
- W2888313647 hasAuthorship W2888313647A5005754499 @default.
- W2888313647 hasAuthorship W2888313647A5066430538 @default.
- W2888313647 hasAuthorship W2888313647A5086213015 @default.
- W2888313647 hasBestOaLocation W28883136472 @default.
- W2888313647 hasConcept C107706546 @default.
- W2888313647 hasConcept C107861326 @default.
- W2888313647 hasConcept C119599485 @default.
- W2888313647 hasConcept C121332964 @default.
- W2888313647 hasConcept C127413603 @default.
- W2888313647 hasConcept C150560799 @default.
- W2888313647 hasConcept C153294291 @default.
- W2888313647 hasConcept C183287310 @default.
- W2888313647 hasConcept C187320778 @default.
- W2888313647 hasConcept C188573790 @default.
- W2888313647 hasConcept C18903297 @default.
- W2888313647 hasConcept C204530211 @default.
- W2888313647 hasConcept C206658404 @default.
- W2888313647 hasConcept C21880701 @default.
- W2888313647 hasConcept C2776461528 @default.
- W2888313647 hasConcept C2777154459 @default.
- W2888313647 hasConcept C2778457487 @default.
- W2888313647 hasConcept C39432304 @default.
- W2888313647 hasConcept C541104983 @default.
- W2888313647 hasConcept C62520636 @default.
- W2888313647 hasConcept C78519656 @default.
- W2888313647 hasConcept C86803240 @default.
- W2888313647 hasConceptScore W2888313647C107706546 @default.
- W2888313647 hasConceptScore W2888313647C107861326 @default.
- W2888313647 hasConceptScore W2888313647C119599485 @default.
- W2888313647 hasConceptScore W2888313647C121332964 @default.
- W2888313647 hasConceptScore W2888313647C127413603 @default.
- W2888313647 hasConceptScore W2888313647C150560799 @default.