Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888342334> ?p ?o ?g. }
- W2888342334 endingPage "1124" @default.
- W2888342334 startingPage "1124" @default.
- W2888342334 abstract "The current study investigates an improved version of Least Square Support Vector Machines integrated with a Bat Algorithm (LSSVM-BA) for modeling the dissolved oxygen (DO) concentration in rivers. The LSSVM-BA model results are compared with those obtained using M5 Tree and Multivariate Adaptive Regression Spline (MARS) models to show the efficacy of this novel integrated model. The river water quality data at three monitoring stations located in the USA are considered for the simulation of DO concentration. Eight input combinations of four water quality parameters, namely, water temperature, discharge, pH, and specific conductance, are used to simulate the DO concentration. The results revealed the superiority of the LSSVM-BA model over the M5 Tree and MARS models in the prediction of river DO. The accuracy of the LSSVM-BA model compared with those of the M5 Tree and MARS models is found to increase by 20% and 42%, respectively, in terms of the root-mean-square error. All the predictive models are found to perform best when all the four water quality variables are used as input, which indicates that it is possible to supply more information to the predictive model by way of incorporation of all the water quality variables." @default.
- W2888342334 created "2018-08-31" @default.
- W2888342334 creator A5000307425 @default.
- W2888342334 creator A5008179908 @default.
- W2888342334 creator A5018996307 @default.
- W2888342334 creator A5037953109 @default.
- W2888342334 creator A5047150854 @default.
- W2888342334 creator A5070829177 @default.
- W2888342334 date "2018-08-23" @default.
- W2888342334 modified "2023-10-06" @default.
- W2888342334 title "The Integration of Nature-Inspired Algorithms with Least Square Support Vector Regression Models: Application to Modeling River Dissolved Oxygen Concentration" @default.
- W2888342334 cites W1967211424 @default.
- W2888342334 cites W1980225742 @default.
- W2888342334 cites W1984509278 @default.
- W2888342334 cites W1987988006 @default.
- W2888342334 cites W1988523865 @default.
- W2888342334 cites W2009088104 @default.
- W2888342334 cites W2013857630 @default.
- W2888342334 cites W2020656512 @default.
- W2888342334 cites W2022173539 @default.
- W2888342334 cites W2027333203 @default.
- W2888342334 cites W2034672247 @default.
- W2888342334 cites W2037931255 @default.
- W2888342334 cites W2055179135 @default.
- W2888342334 cites W2058621438 @default.
- W2888342334 cites W2067413593 @default.
- W2888342334 cites W2075153278 @default.
- W2888342334 cites W2090612963 @default.
- W2888342334 cites W2094177979 @default.
- W2888342334 cites W2106100979 @default.
- W2888342334 cites W2114563684 @default.
- W2888342334 cites W2114821107 @default.
- W2888342334 cites W2142230249 @default.
- W2888342334 cites W2256768396 @default.
- W2888342334 cites W2286991778 @default.
- W2888342334 cites W2290684944 @default.
- W2888342334 cites W2329857398 @default.
- W2888342334 cites W2331446345 @default.
- W2888342334 cites W2332474383 @default.
- W2888342334 cites W2333252900 @default.
- W2888342334 cites W2338648705 @default.
- W2888342334 cites W2415839891 @default.
- W2888342334 cites W2419464021 @default.
- W2888342334 cites W2429948132 @default.
- W2888342334 cites W2472474259 @default.
- W2888342334 cites W2518002543 @default.
- W2888342334 cites W2529588304 @default.
- W2888342334 cites W2534571818 @default.
- W2888342334 cites W2562177536 @default.
- W2888342334 cites W2587457795 @default.
- W2888342334 cites W2589687845 @default.
- W2888342334 cites W2600845876 @default.
- W2888342334 cites W2617137052 @default.
- W2888342334 cites W2618548677 @default.
- W2888342334 cites W2720148859 @default.
- W2888342334 cites W2735367008 @default.
- W2888342334 cites W2742382057 @default.
- W2888342334 cites W2748606210 @default.
- W2888342334 cites W2751646556 @default.
- W2888342334 cites W2753179649 @default.
- W2888342334 cites W2754332904 @default.
- W2888342334 cites W2765096842 @default.
- W2888342334 cites W2766230721 @default.
- W2888342334 cites W2768460349 @default.
- W2888342334 cites W2781988471 @default.
- W2888342334 cites W2783359167 @default.
- W2888342334 cites W2784364391 @default.
- W2888342334 cites W2784938620 @default.
- W2888342334 cites W2785767012 @default.
- W2888342334 cites W2786729166 @default.
- W2888342334 cites W2789890582 @default.
- W2888342334 cites W2791299376 @default.
- W2888342334 cites W2791669302 @default.
- W2888342334 cites W2792277382 @default.
- W2888342334 cites W2792965584 @default.
- W2888342334 cites W2794018521 @default.
- W2888342334 cites W2795153861 @default.
- W2888342334 cites W2797714761 @default.
- W2888342334 cites W2801046645 @default.
- W2888342334 cites W2801998166 @default.
- W2888342334 cites W2802523594 @default.
- W2888342334 cites W2803016972 @default.
- W2888342334 cites W335820113 @default.
- W2888342334 cites W4239510810 @default.
- W2888342334 cites W836867855 @default.
- W2888342334 doi "https://doi.org/10.3390/w10091124" @default.
- W2888342334 hasPublicationYear "2018" @default.
- W2888342334 type Work @default.
- W2888342334 sameAs 2888342334 @default.
- W2888342334 citedByCount "56" @default.
- W2888342334 countsByYear W28883423342019 @default.
- W2888342334 countsByYear W28883423342020 @default.
- W2888342334 countsByYear W28883423342021 @default.
- W2888342334 countsByYear W28883423342022 @default.
- W2888342334 countsByYear W28883423342023 @default.
- W2888342334 crossrefType "journal-article" @default.
- W2888342334 hasAuthorship W2888342334A5000307425 @default.
- W2888342334 hasAuthorship W2888342334A5008179908 @default.