Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888372343> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2888372343 abstract "Purpose The aim of this study was to investigate if 3D convolutional deep neural network implementation DeepMedic [1] could be applied to computed tomography angiography (CTA) images in acute stroke lesion detection. DeepMedic has previously been successful in lesion segmentation from magnetic resonance images [2] . Methods Preprocessing steps included robust intracranial space segmentation and intensity normalization. Hypoattenuated regions visible in the CTAs were manually delineated by two neuroradiologists and considered as ground truths. Data augmentation was performed with left–right flipped images. Training was done with scans from five infarct patients and subsequent testing with five separate cases. 35 epochs with 15 subepochs were used in the training. Results The initial results were promising as the infarcts in all the test cases could be correctly lateralized. The achieved voxel-wise segmentation performance was moderate (considering small training set) with Sorensen-Dice similarity coefficient 0.52 for the test data. Conclusions The significance of open science and freely available scientific software will only increase in the future. Convolutional neural networks demonstrate promising prospects for medical imaging. DeepMedic can be applied to CT images with proper data preprocessing. In a future study the findings will be verified with a larger cohort. Improving the performance with additional input features will also be investigated." @default.
- W2888372343 created "2018-08-31" @default.
- W2888372343 creator A5007069710 @default.
- W2888372343 creator A5028801607 @default.
- W2888372343 creator A5066676105 @default.
- W2888372343 creator A5086114424 @default.
- W2888372343 creator A5091615721 @default.
- W2888372343 date "2018-08-01" @default.
- W2888372343 modified "2023-09-27" @default.
- W2888372343 title "[OA214] An experience with open source machine learning software deepmedic" @default.
- W2888372343 cites W2301358467 @default.
- W2888372343 cites W2484736472 @default.
- W2888372343 doi "https://doi.org/10.1016/j.ejmp.2018.06.286" @default.
- W2888372343 hasPublicationYear "2018" @default.
- W2888372343 type Work @default.
- W2888372343 sameAs 2888372343 @default.
- W2888372343 citedByCount "0" @default.
- W2888372343 crossrefType "journal-article" @default.
- W2888372343 hasAuthorship W2888372343A5007069710 @default.
- W2888372343 hasAuthorship W2888372343A5028801607 @default.
- W2888372343 hasAuthorship W2888372343A5066676105 @default.
- W2888372343 hasAuthorship W2888372343A5086114424 @default.
- W2888372343 hasAuthorship W2888372343A5091615721 @default.
- W2888372343 hasConcept C108583219 @default.
- W2888372343 hasConcept C124504099 @default.
- W2888372343 hasConcept C146849305 @default.
- W2888372343 hasConcept C153180895 @default.
- W2888372343 hasConcept C154945302 @default.
- W2888372343 hasConcept C163892561 @default.
- W2888372343 hasConcept C199360897 @default.
- W2888372343 hasConcept C2777904410 @default.
- W2888372343 hasConcept C34736171 @default.
- W2888372343 hasConcept C41008148 @default.
- W2888372343 hasConcept C50644808 @default.
- W2888372343 hasConcept C54170458 @default.
- W2888372343 hasConcept C58489278 @default.
- W2888372343 hasConcept C81363708 @default.
- W2888372343 hasConcept C89600930 @default.
- W2888372343 hasConceptScore W2888372343C108583219 @default.
- W2888372343 hasConceptScore W2888372343C124504099 @default.
- W2888372343 hasConceptScore W2888372343C146849305 @default.
- W2888372343 hasConceptScore W2888372343C153180895 @default.
- W2888372343 hasConceptScore W2888372343C154945302 @default.
- W2888372343 hasConceptScore W2888372343C163892561 @default.
- W2888372343 hasConceptScore W2888372343C199360897 @default.
- W2888372343 hasConceptScore W2888372343C2777904410 @default.
- W2888372343 hasConceptScore W2888372343C34736171 @default.
- W2888372343 hasConceptScore W2888372343C41008148 @default.
- W2888372343 hasConceptScore W2888372343C50644808 @default.
- W2888372343 hasConceptScore W2888372343C54170458 @default.
- W2888372343 hasConceptScore W2888372343C58489278 @default.
- W2888372343 hasConceptScore W2888372343C81363708 @default.
- W2888372343 hasConceptScore W2888372343C89600930 @default.
- W2888372343 hasLocation W28883723431 @default.
- W2888372343 hasOpenAccess W2888372343 @default.
- W2888372343 hasPrimaryLocation W28883723431 @default.
- W2888372343 hasRelatedWork W1573877189 @default.
- W2888372343 hasRelatedWork W2342591535 @default.
- W2888372343 hasRelatedWork W2593118890 @default.
- W2888372343 hasRelatedWork W2594405495 @default.
- W2888372343 hasRelatedWork W2762006829 @default.
- W2888372343 hasRelatedWork W2953216211 @default.
- W2888372343 hasRelatedWork W3213228618 @default.
- W2888372343 hasRelatedWork W4214881770 @default.
- W2888372343 hasRelatedWork W4229456164 @default.
- W2888372343 hasRelatedWork W4281621674 @default.
- W2888372343 isParatext "false" @default.
- W2888372343 isRetracted "false" @default.
- W2888372343 magId "2888372343" @default.
- W2888372343 workType "article" @default.