Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888408766> ?p ?o ?g. }
- W2888408766 endingPage "30" @default.
- W2888408766 startingPage "21" @default.
- W2888408766 abstract "DNA-binding proteins play a crucial role in various biological processes such as regulation of DNA modification, repair, replication, and transcription. These proteins widely participate in the production of drugs, antibiotics, and steroids. Many computational approaches have been developed to identify DNA-binding proteins, but some methods are time-consuming and expensive while some are laborious. Still, it is a challenging task for the researchers to develop highly promising computational methods to identify DNA-binding proteins with high precision. In our work, we developed a new computational approach named as DBPPred-PDSD which has more promising prediction power for DNA-binding proteins. We employed two datasets, extracted features via Split Amino Acid Composition (SAAC) and Position Specific Scoring Matrix (PSSM). Further, we applied the Discrete Wavelet Transform (DWT) on PSSM to extract dominant features. From these features space, optimal features are generated by Maximum Relevance and Minimum Redundancy (mRMR) and fused. To obtain highly informative features, we used Support Vector Machine-Recursive Feature Elimination (SVM-RFE) and provided to well-known classifiers namely Support Vector Machine (SVM) and Random Forest (RF). Our model with the SVM classifier on three tests i.e. Jackknife cross-validation, 10-fold cross-validation and Independent tests achieved the highest success rate than other existing methods in the literature." @default.
- W2888408766 created "2018-08-31" @default.
- W2888408766 creator A5008960436 @default.
- W2888408766 creator A5009823080 @default.
- W2888408766 creator A5027715721 @default.
- W2888408766 creator A5034665130 @default.
- W2888408766 creator A5049615987 @default.
- W2888408766 creator A5082072208 @default.
- W2888408766 creator A5086761503 @default.
- W2888408766 date "2018-11-01" @default.
- W2888408766 modified "2023-10-06" @default.
- W2888408766 title "DBPPred-PDSD: Machine learning approach for prediction of DNA-binding proteins using Discrete Wavelet Transform and optimized integrated features space" @default.
- W2888408766 cites W1149957381 @default.
- W2888408766 cites W1485819570 @default.
- W2888408766 cites W1593384406 @default.
- W2888408766 cites W1682406717 @default.
- W2888408766 cites W1918744929 @default.
- W2888408766 cites W1969956377 @default.
- W2888408766 cites W1972675532 @default.
- W2888408766 cites W1975449568 @default.
- W2888408766 cites W1980897319 @default.
- W2888408766 cites W1982814196 @default.
- W2888408766 cites W1989298127 @default.
- W2888408766 cites W1992116297 @default.
- W2888408766 cites W1995543329 @default.
- W2888408766 cites W2009470087 @default.
- W2888408766 cites W2010035436 @default.
- W2888408766 cites W2012351316 @default.
- W2888408766 cites W2013788476 @default.
- W2888408766 cites W2016579482 @default.
- W2888408766 cites W2018327163 @default.
- W2888408766 cites W2018623710 @default.
- W2888408766 cites W2021211279 @default.
- W2888408766 cites W2021465030 @default.
- W2888408766 cites W2027364181 @default.
- W2888408766 cites W2029167106 @default.
- W2888408766 cites W2030922238 @default.
- W2888408766 cites W2042714852 @default.
- W2888408766 cites W2043844813 @default.
- W2888408766 cites W2043976158 @default.
- W2888408766 cites W2052115585 @default.
- W2888408766 cites W2072805285 @default.
- W2888408766 cites W2077285561 @default.
- W2888408766 cites W2090561245 @default.
- W2888408766 cites W2092127276 @default.
- W2888408766 cites W2102354653 @default.
- W2888408766 cites W2102864597 @default.
- W2888408766 cites W2103291381 @default.
- W2888408766 cites W2103940020 @default.
- W2888408766 cites W2114042714 @default.
- W2888408766 cites W2114535505 @default.
- W2888408766 cites W2121090558 @default.
- W2888408766 cites W2122401542 @default.
- W2888408766 cites W2127877542 @default.
- W2888408766 cites W2131987814 @default.
- W2888408766 cites W2133036743 @default.
- W2888408766 cites W2137565410 @default.
- W2888408766 cites W2138769522 @default.
- W2888408766 cites W2142678478 @default.
- W2888408766 cites W2143426320 @default.
- W2888408766 cites W2148518855 @default.
- W2888408766 cites W2154053567 @default.
- W2888408766 cites W2156690214 @default.
- W2888408766 cites W2158714788 @default.
- W2888408766 cites W2169773841 @default.
- W2888408766 cites W2170003281 @default.
- W2888408766 cites W2173801226 @default.
- W2888408766 cites W2313411748 @default.
- W2888408766 cites W2370182361 @default.
- W2888408766 cites W2402867410 @default.
- W2888408766 cites W2470414691 @default.
- W2888408766 cites W2508589543 @default.
- W2888408766 cites W2520558288 @default.
- W2888408766 cites W2526763554 @default.
- W2888408766 cites W2591975816 @default.
- W2888408766 cites W2614649942 @default.
- W2888408766 cites W2620675477 @default.
- W2888408766 cites W2737592062 @default.
- W2888408766 cites W2748005921 @default.
- W2888408766 cites W2754018480 @default.
- W2888408766 cites W2769306988 @default.
- W2888408766 cites W2791485763 @default.
- W2888408766 cites W2805110914 @default.
- W2888408766 cites W2884152064 @default.
- W2888408766 cites W4239510810 @default.
- W2888408766 cites W4382585000 @default.
- W2888408766 doi "https://doi.org/10.1016/j.chemolab.2018.08.013" @default.
- W2888408766 hasPublicationYear "2018" @default.
- W2888408766 type Work @default.
- W2888408766 sameAs 2888408766 @default.
- W2888408766 citedByCount "45" @default.
- W2888408766 countsByYear W28884087662019 @default.
- W2888408766 countsByYear W28884087662020 @default.
- W2888408766 countsByYear W28884087662021 @default.
- W2888408766 countsByYear W28884087662022 @default.
- W2888408766 countsByYear W28884087662023 @default.
- W2888408766 crossrefType "journal-article" @default.
- W2888408766 hasAuthorship W2888408766A5008960436 @default.