Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888420093> ?p ?o ?g. }
- W2888420093 endingPage "3426" @default.
- W2888420093 startingPage "3409" @default.
- W2888420093 abstract "Abstract. In this study, we identify the key message passing interface (MPI) operations required in atmospheric modelling; then, we use a skeleton program and a simulation framework (based on SST/macro simulation package) to simulate these MPI operations (transposition, halo exchange, and allreduce), with the perspective of future exascale machines in mind. The experimental results show that the choice of the collective algorithm has a great impact on the performance of communications; in particular, we find that the generalized ring-k algorithm for the alltoallv operation and the generalized recursive-k algorithm for the allreduce operation perform the best. In addition, we observe that the impacts of interconnect topologies and routing algorithms on the performance and scalability of transpositions, halo exchange, and allreduce operations are significant. However, the routing algorithm has a negligible impact on the performance of allreduce operations because of its small message size. It is impossible to infinitely grow bandwidth and reduce latency due to hardware limitations. Thus, congestion may occur and limit the continuous improvement of the performance of communications. The experiments show that the performance of communications can be improved when congestion is mitigated by a proper configuration of the topology and routing algorithm, which uniformly distribute the congestion over the interconnect network to avoid the hotspots and bottlenecks caused by congestion. It is generally believed that the transpositions seriously limit the scalability of the spectral models. The experiments show that the communication time of the transposition is larger than those of the wide halo exchange for the semi-Lagrangian method and the allreduce in the generalized conjugate residual (GCR) iterative solver for the semi-implicit method below 2×105 MPI processes. The transposition whose communication time decreases quickly with increasing number of MPI processes demonstrates strong scalability in the case of very large grids and moderate latencies. The halo exchange whose communication time decreases more slowly than that of transposition with increasing number of MPI processes reveals its weak scalability. In contrast, the allreduce whose communication time increases with increasing number of MPI processes does not scale well. From this point of view, the scalability of spectral models could still be acceptable. Therefore it seems to be premature to conclude that the scalability of the grid-point models is better than that of spectral models at the exascale, unless innovative methods are exploited to mitigate the problem of the scalability presented in the grid-point models." @default.
- W2888420093 created "2018-08-31" @default.
- W2888420093 creator A5017557629 @default.
- W2888420093 creator A5020571285 @default.
- W2888420093 date "2018-08-22" @default.
- W2888420093 modified "2023-10-01" @default.
- W2888420093 title "Simulation of the performance and scalability of message passing interface (MPI) communications of atmospheric models running on exascale supercomputers" @default.
- W2888420093 cites W1789155650 @default.
- W2888420093 cites W1959414028 @default.
- W2888420093 cites W1983296355 @default.
- W2888420093 cites W1986352825 @default.
- W2888420093 cites W2001618530 @default.
- W2888420093 cites W2026159418 @default.
- W2888420093 cites W2026532005 @default.
- W2888420093 cites W2029023406 @default.
- W2888420093 cites W2033318187 @default.
- W2888420093 cites W2035908552 @default.
- W2888420093 cites W2042876290 @default.
- W2888420093 cites W2049644498 @default.
- W2888420093 cites W2050788236 @default.
- W2888420093 cites W2060469182 @default.
- W2888420093 cites W2064811976 @default.
- W2888420093 cites W2068395392 @default.
- W2888420093 cites W207051584 @default.
- W2888420093 cites W2076285911 @default.
- W2888420093 cites W2076690115 @default.
- W2888420093 cites W2081990808 @default.
- W2888420093 cites W2104088944 @default.
- W2888420093 cites W2104916057 @default.
- W2888420093 cites W2109356213 @default.
- W2888420093 cites W2112793938 @default.
- W2888420093 cites W2112863322 @default.
- W2888420093 cites W2123892206 @default.
- W2888420093 cites W2131613942 @default.
- W2888420093 cites W2133548751 @default.
- W2888420093 cites W2134281251 @default.
- W2888420093 cites W2144806266 @default.
- W2888420093 cites W2152024418 @default.
- W2888420093 cites W2157692945 @default.
- W2888420093 cites W2158669424 @default.
- W2888420093 cites W2186257844 @default.
- W2888420093 cites W2221957684 @default.
- W2888420093 cites W2293873223 @default.
- W2888420093 cites W2332895340 @default.
- W2888420093 cites W2363845455 @default.
- W2888420093 cites W2407167622 @default.
- W2888420093 cites W2528829345 @default.
- W2888420093 cites W2561672146 @default.
- W2888420093 cites W3103743862 @default.
- W2888420093 cites W3147460469 @default.
- W2888420093 cites W4244682390 @default.
- W2888420093 cites W4247966761 @default.
- W2888420093 cites W639668156 @default.
- W2888420093 doi "https://doi.org/10.5194/gmd-11-3409-2018" @default.
- W2888420093 hasPublicationYear "2018" @default.
- W2888420093 type Work @default.
- W2888420093 sameAs 2888420093 @default.
- W2888420093 citedByCount "3" @default.
- W2888420093 countsByYear W28884200932019 @default.
- W2888420093 countsByYear W28884200932021 @default.
- W2888420093 countsByYear W28884200932022 @default.
- W2888420093 crossrefType "journal-article" @default.
- W2888420093 hasAuthorship W2888420093A5017557629 @default.
- W2888420093 hasAuthorship W2888420093A5020571285 @default.
- W2888420093 hasBestOaLocation W28884200931 @default.
- W2888420093 hasConcept C111919701 @default.
- W2888420093 hasConcept C114614502 @default.
- W2888420093 hasConcept C120314980 @default.
- W2888420093 hasConcept C123745756 @default.
- W2888420093 hasConcept C15744967 @default.
- W2888420093 hasConcept C166782233 @default.
- W2888420093 hasConcept C173608175 @default.
- W2888420093 hasConcept C184720557 @default.
- W2888420093 hasConcept C186594467 @default.
- W2888420093 hasConcept C199845137 @default.
- W2888420093 hasConcept C2778837361 @default.
- W2888420093 hasConcept C31258907 @default.
- W2888420093 hasConcept C33923547 @default.
- W2888420093 hasConcept C41008148 @default.
- W2888420093 hasConcept C48044578 @default.
- W2888420093 hasConcept C542102704 @default.
- W2888420093 hasConcept C83283714 @default.
- W2888420093 hasConcept C854659 @default.
- W2888420093 hasConceptScore W2888420093C111919701 @default.
- W2888420093 hasConceptScore W2888420093C114614502 @default.
- W2888420093 hasConceptScore W2888420093C120314980 @default.
- W2888420093 hasConceptScore W2888420093C123745756 @default.
- W2888420093 hasConceptScore W2888420093C15744967 @default.
- W2888420093 hasConceptScore W2888420093C166782233 @default.
- W2888420093 hasConceptScore W2888420093C173608175 @default.
- W2888420093 hasConceptScore W2888420093C184720557 @default.
- W2888420093 hasConceptScore W2888420093C186594467 @default.
- W2888420093 hasConceptScore W2888420093C199845137 @default.
- W2888420093 hasConceptScore W2888420093C2778837361 @default.
- W2888420093 hasConceptScore W2888420093C31258907 @default.
- W2888420093 hasConceptScore W2888420093C33923547 @default.
- W2888420093 hasConceptScore W2888420093C41008148 @default.
- W2888420093 hasConceptScore W2888420093C48044578 @default.