Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888492004> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2888492004 abstract "Strongly Rayleigh distributions are a class of negatively dependent distributions of binary-valued random variables [Borcea, Branden, Liggett JAMS 09]. Recently, these distributions have played a crucial role in the analysis of algorithms for fundamental graph problems, e.g. Traveling Salesman Problem [Gharan, Saberi, Singh FOCS 11]. We prove a new matrix Chernoff bound for Strongly Rayleigh distributions. As an immediate application, we show that adding together the Laplacians of $epsilon^{-2} log^2 n$ random spanning trees gives an $(1pm epsilon)$ spectral sparsifiers of graph Laplacians with high probability. Thus, we positively answer an open question posed in [Baston, Spielman, Srivastava, Teng JACM 13]. Our number of spanning trees for spectral sparsifier matches the number of spanning trees required to obtain a cut sparsifier in [Fung, Hariharan, Harvey, Panigraphi STOC 11]. The previous best result was by naively applying a classical matrix Chernoff bound which requires $epsilon^{-2} n log n$ spanning trees. For the tree averaging procedure to agree with the original graph Laplacian in expectation, each edge of the tree should be reweighted by the inverse of the edge leverage score in the original graph. We also show that when using this reweighting of the edges, the Laplacian of single random tree is bounded above in the PSD order by the original graph Laplacian times a factor $log n$ with high probability, i.e. $L_T preceq O(log n) L_G$. We show a lower bound that almost matches our last result, namely that in some graphs, with high probability, the random spanning tree is $it{not}$ bounded above in the spectral order by $frac{log n}{loglog n}$ times the original graph Laplacian. We also show a lower bound that in $epsilon^{-2} log n$ spanning trees are necessary to get a $(1pm epsilon)$ spectral sparsifier." @default.
- W2888492004 created "2018-08-31" @default.
- W2888492004 creator A5053449713 @default.
- W2888492004 creator A5091070408 @default.
- W2888492004 date "2018-10-01" @default.
- W2888492004 modified "2023-09-23" @default.
- W2888492004 title "A Matrix Chernoff Bound for Strongly Rayleigh Distributions and Spectral Sparsifiers from a few Random Spanning Trees" @default.
- W2888492004 cites W1480355964 @default.
- W2888492004 cites W1585256533 @default.
- W2888492004 cites W1601422707 @default.
- W2888492004 cites W1618327071 @default.
- W2888492004 cites W1702517725 @default.
- W2888492004 cites W1967134148 @default.
- W2888492004 cites W1968057111 @default.
- W2888492004 cites W1983193888 @default.
- W2888492004 cites W1985234177 @default.
- W2888492004 cites W1997315949 @default.
- W2888492004 cites W2008095352 @default.
- W2888492004 cites W2018691712 @default.
- W2888492004 cites W2019040312 @default.
- W2888492004 cites W2021272950 @default.
- W2888492004 cites W2029673229 @default.
- W2888492004 cites W2038652993 @default.
- W2888492004 cites W2042587503 @default.
- W2888492004 cites W2045107949 @default.
- W2888492004 cites W2051540665 @default.
- W2888492004 cites W2062877152 @default.
- W2888492004 cites W2067081844 @default.
- W2888492004 cites W2080051189 @default.
- W2888492004 cites W2109176946 @default.
- W2888492004 cites W2111933629 @default.
- W2888492004 cites W2130956934 @default.
- W2888492004 cites W2134348739 @default.
- W2888492004 cites W2137798267 @default.
- W2888492004 cites W2159376684 @default.
- W2888492004 cites W2168919539 @default.
- W2888492004 cites W2295578127 @default.
- W2888492004 cites W2500625161 @default.
- W2888492004 cites W2547436936 @default.
- W2888492004 cites W2552685338 @default.
- W2888492004 cites W2797316125 @default.
- W2888492004 cites W2952110341 @default.
- W2888492004 cites W2962800567 @default.
- W2888492004 cites W2962911929 @default.
- W2888492004 cites W2963324223 @default.
- W2888492004 cites W3022367360 @default.
- W2888492004 cites W3098045837 @default.
- W2888492004 cites W4213057611 @default.
- W2888492004 cites W4251295351 @default.
- W2888492004 doi "https://doi.org/10.1109/focs.2018.00043" @default.
- W2888492004 hasPublicationYear "2018" @default.
- W2888492004 type Work @default.
- W2888492004 sameAs 2888492004 @default.
- W2888492004 citedByCount "17" @default.
- W2888492004 countsByYear W28884920042019 @default.
- W2888492004 countsByYear W28884920042020 @default.
- W2888492004 countsByYear W28884920042021 @default.
- W2888492004 countsByYear W28884920042022 @default.
- W2888492004 crossrefType "proceedings-article" @default.
- W2888492004 hasAuthorship W2888492004A5053449713 @default.
- W2888492004 hasAuthorship W2888492004A5091070408 @default.
- W2888492004 hasBestOaLocation W28884920042 @default.
- W2888492004 hasConcept C11413529 @default.
- W2888492004 hasConcept C114614502 @default.
- W2888492004 hasConcept C121332964 @default.
- W2888492004 hasConcept C134306372 @default.
- W2888492004 hasConcept C14539891 @default.
- W2888492004 hasConcept C33923547 @default.
- W2888492004 hasConcept C46244369 @default.
- W2888492004 hasConcept C62520636 @default.
- W2888492004 hasConcept C64331007 @default.
- W2888492004 hasConcept C77553402 @default.
- W2888492004 hasConceptScore W2888492004C11413529 @default.
- W2888492004 hasConceptScore W2888492004C114614502 @default.
- W2888492004 hasConceptScore W2888492004C121332964 @default.
- W2888492004 hasConceptScore W2888492004C134306372 @default.
- W2888492004 hasConceptScore W2888492004C14539891 @default.
- W2888492004 hasConceptScore W2888492004C33923547 @default.
- W2888492004 hasConceptScore W2888492004C46244369 @default.
- W2888492004 hasConceptScore W2888492004C62520636 @default.
- W2888492004 hasConceptScore W2888492004C64331007 @default.
- W2888492004 hasConceptScore W2888492004C77553402 @default.
- W2888492004 hasLocation W28884920041 @default.
- W2888492004 hasLocation W28884920042 @default.
- W2888492004 hasOpenAccess W2888492004 @default.
- W2888492004 hasPrimaryLocation W28884920041 @default.
- W2888492004 hasRelatedWork W1993940507 @default.
- W2888492004 hasRelatedWork W2033187103 @default.
- W2888492004 hasRelatedWork W2147388254 @default.
- W2888492004 hasRelatedWork W2569250480 @default.
- W2888492004 hasRelatedWork W2569968971 @default.
- W2888492004 hasRelatedWork W2952626446 @default.
- W2888492004 hasRelatedWork W4281889826 @default.
- W2888492004 hasRelatedWork W4301385707 @default.
- W2888492004 hasRelatedWork W4301950247 @default.
- W2888492004 hasRelatedWork W4309568663 @default.
- W2888492004 isParatext "false" @default.
- W2888492004 isRetracted "false" @default.
- W2888492004 magId "2888492004" @default.
- W2888492004 workType "article" @default.