Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888553702> ?p ?o ?g. }
- W2888553702 endingPage "5711" @default.
- W2888553702 startingPage "5702" @default.
- W2888553702 abstract "Prodigious resources are currently being devoted to control the size and morphology of metal nanoparticles (NPs). Several homogeneous chemical and photochemical techniques exist for the synthesis of metal NPs; however, these synthetic methods generally leave a distribution of NP shapes and sizes and require a stabilizing ligand to prevent aggregation. Electrodeposition of metal NPs onto conductive surfaces is a versatile technique. However, spatial control on the conductive surface is difficult to attain, even on well-behaved materials like highly oriented pyrolytic graphite. Here, we achieve spatial control of Pt NPs on amorphous graphite by confining a precursor metal salt, such as hexachloroplatinic acid (HCPA), to a water droplet suspended in oil, such as dichloroethane. When a graphite electrode was placed in solution and biased at a mild potential (−0.7 V vs the ferrocene/ferrocenium couple, Cp2Fe0/+), droplet-mediated electrodeposition produced NPs characterized by the electrochemical collision method and scanning electron microscopy (SEM). The flux of droplets to the graphite surface followed the familiar Cottrell relationship for semi-infinite linear diffusion. Pt NP size selectivity can be directly modulated by tuning the initial concentration of HCPA in the droplet. Interestingly, the size, morphology, roughness, and coverage are shown to be influenced by the surfactant used to stabilize the water droplets, the concentration of HCPA, and the deposition potential. For instance, no surfactant, sodium dodecyl sulfate (SDS), and Span-20 generated NPs with relative roughness values of 46, 50, and 54%, respectively. Importantly, the incorporation of Span-20, a neutral emulsifier, facilitated homogeneously distributed Pt NP surface coverage on amorphous graphite, indicating the technique is apathetic to basal planes and edges of the graphite surface. The addition of SDS to droplets with large concentrations of HCPA resulted in conical and pillar-like NP morphologies, furthur enhancing surface area. The effect of deposition potential was also explored, which indicated that the roughness of the NPs can be increased by ∼10% depending on the potential. We also demonstrate that the method can be extended to the deposition of several other metal NPs, including silver, gold, copper, tin, iron, and cerium onto various substrates such as gold, silicon, boron-doped diamond (BDD), and highly oriented pyrolytic graphite (HOPG). The advantage of this technique is that size-selective electrodeposition of ligand-free, uniformly distributed NPs can be achieved." @default.
- W2888553702 created "2018-08-31" @default.
- W2888553702 creator A5001089172 @default.
- W2888553702 creator A5004258094 @default.
- W2888553702 creator A5072441433 @default.
- W2888553702 date "2018-08-20" @default.
- W2888553702 modified "2023-10-11" @default.
- W2888553702 title "A Universal Platform for the Electrodeposition of Ligand-Free Metal Nanoparticles from a Water-in-Oil Emulsion System" @default.
- W2888553702 cites W150673870 @default.
- W2888553702 cites W1967244854 @default.
- W2888553702 cites W1972449597 @default.
- W2888553702 cites W1982273627 @default.
- W2888553702 cites W1990065445 @default.
- W2888553702 cites W1991441254 @default.
- W2888553702 cites W1991545630 @default.
- W2888553702 cites W2003654459 @default.
- W2888553702 cites W2020539372 @default.
- W2888553702 cites W2029622302 @default.
- W2888553702 cites W2035135690 @default.
- W2888553702 cites W2040338073 @default.
- W2888553702 cites W2044549567 @default.
- W2888553702 cites W2046933034 @default.
- W2888553702 cites W2056332543 @default.
- W2888553702 cites W2056889983 @default.
- W2888553702 cites W2062182550 @default.
- W2888553702 cites W2064289944 @default.
- W2888553702 cites W2081399755 @default.
- W2888553702 cites W2092127998 @default.
- W2888553702 cites W2093275492 @default.
- W2888553702 cites W2138316019 @default.
- W2888553702 cites W2156043887 @default.
- W2888553702 cites W2157895133 @default.
- W2888553702 cites W2164824831 @default.
- W2888553702 cites W2170905482 @default.
- W2888553702 cites W2222757491 @default.
- W2888553702 cites W2253354944 @default.
- W2888553702 cites W2322781201 @default.
- W2888553702 cites W2338789940 @default.
- W2888553702 cites W2432218761 @default.
- W2888553702 cites W2437662119 @default.
- W2888553702 cites W2460273427 @default.
- W2888553702 cites W2462398895 @default.
- W2888553702 cites W2473518692 @default.
- W2888553702 cites W2488641094 @default.
- W2888553702 cites W2560582565 @default.
- W2888553702 cites W2607257394 @default.
- W2888553702 cites W2615930218 @default.
- W2888553702 cites W2616878111 @default.
- W2888553702 cites W2626673721 @default.
- W2888553702 cites W2742101265 @default.
- W2888553702 cites W2768873186 @default.
- W2888553702 cites W2802035908 @default.
- W2888553702 cites W2802693874 @default.
- W2888553702 cites W2808282983 @default.
- W2888553702 cites W2809411025 @default.
- W2888553702 doi "https://doi.org/10.1021/acsanm.8b01308" @default.
- W2888553702 hasPublicationYear "2018" @default.
- W2888553702 type Work @default.
- W2888553702 sameAs 2888553702 @default.
- W2888553702 citedByCount "46" @default.
- W2888553702 countsByYear W28885537022018 @default.
- W2888553702 countsByYear W28885537022019 @default.
- W2888553702 countsByYear W28885537022020 @default.
- W2888553702 countsByYear W28885537022021 @default.
- W2888553702 countsByYear W28885537022022 @default.
- W2888553702 countsByYear W28885537022023 @default.
- W2888553702 crossrefType "journal-article" @default.
- W2888553702 hasAuthorship W2888553702A5001089172 @default.
- W2888553702 hasAuthorship W2888553702A5004258094 @default.
- W2888553702 hasAuthorship W2888553702A5072441433 @default.
- W2888553702 hasConcept C127413603 @default.
- W2888553702 hasConcept C147789679 @default.
- W2888553702 hasConcept C155672457 @default.
- W2888553702 hasConcept C171250308 @default.
- W2888553702 hasConcept C17525397 @default.
- W2888553702 hasConcept C178790620 @default.
- W2888553702 hasConcept C179104552 @default.
- W2888553702 hasConcept C185592680 @default.
- W2888553702 hasConcept C192562407 @default.
- W2888553702 hasConcept C2778461158 @default.
- W2888553702 hasConcept C2779698641 @default.
- W2888553702 hasConcept C42360764 @default.
- W2888553702 hasConcept C52859227 @default.
- W2888553702 hasConcept C544153396 @default.
- W2888553702 hasConcept C58226133 @default.
- W2888553702 hasConceptScore W2888553702C127413603 @default.
- W2888553702 hasConceptScore W2888553702C147789679 @default.
- W2888553702 hasConceptScore W2888553702C155672457 @default.
- W2888553702 hasConceptScore W2888553702C171250308 @default.
- W2888553702 hasConceptScore W2888553702C17525397 @default.
- W2888553702 hasConceptScore W2888553702C178790620 @default.
- W2888553702 hasConceptScore W2888553702C179104552 @default.
- W2888553702 hasConceptScore W2888553702C185592680 @default.
- W2888553702 hasConceptScore W2888553702C192562407 @default.
- W2888553702 hasConceptScore W2888553702C2778461158 @default.
- W2888553702 hasConceptScore W2888553702C2779698641 @default.
- W2888553702 hasConceptScore W2888553702C42360764 @default.
- W2888553702 hasConceptScore W2888553702C52859227 @default.