Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888634710> ?p ?o ?g. }
- W2888634710 endingPage "752" @default.
- W2888634710 startingPage "721" @default.
- W2888634710 abstract "Linked Open Data has been recognized as a valuable source for background information in many data mining and information retrieval tasks. However, most of the existing tools require features in propositional form, i.e., a vector of nominal or numerical features associated with an instance, while Linked Open Data sources are graphs by nature. In this paper, we present RDF2Vec, an approach that uses language modeling approaches for unsupervised feature extraction from sequences of words, and adapts them to RDF graphs.We generate sequences by leveraging local information from graph sub-structures, harvested by Weisfeiler-Lehman Subtree RDF Graph Kernels and graph walks, and learn latent numerical representations of entities in RDF graphs.We evaluate our approach on three different tasks: (i) standard machine learning tasks, (ii) entity and document modeling, and (iii) content-based recommender systems. The evaluation shows that the proposed entity embeddings outperform existing techniques, and that pre-computed feature vector representations of general knowledge graphs such as DBpedia and Wikidata can be easily reused for different tasks." @default.
- W2888634710 created "2018-08-31" @default.
- W2888634710 creator A5002796232 @default.
- W2888634710 creator A5034668928 @default.
- W2888634710 creator A5040542771 @default.
- W2888634710 creator A5045816451 @default.
- W2888634710 creator A5049314822 @default.
- W2888634710 date "2019-05-23" @default.
- W2888634710 modified "2023-10-16" @default.
- W2888634710 title "RDF2Vec: RDF graph embeddings and their applications" @default.
- W2888634710 cites W115028411 @default.
- W2888634710 cites W115887824 @default.
- W2888634710 cites W1529533208 @default.
- W2888634710 cites W1545331097 @default.
- W2888634710 cites W1552119797 @default.
- W2888634710 cites W1552847225 @default.
- W2888634710 cites W1683397350 @default.
- W2888634710 cites W1689688298 @default.
- W2888634710 cites W1852540207 @default.
- W2888634710 cites W1965355809 @default.
- W2888634710 cites W1978400840 @default.
- W2888634710 cites W1985658893 @default.
- W2888634710 cites W1987431925 @default.
- W2888634710 cites W1994389483 @default.
- W2888634710 cites W1996476189 @default.
- W2888634710 cites W2001926336 @default.
- W2888634710 cites W2008857988 @default.
- W2888634710 cites W2010187764 @default.
- W2888634710 cites W2015191210 @default.
- W2888634710 cites W2026085740 @default.
- W2888634710 cites W2030484290 @default.
- W2888634710 cites W2032464724 @default.
- W2888634710 cites W2045745608 @default.
- W2888634710 cites W204615560 @default.
- W2888634710 cites W2054141820 @default.
- W2888634710 cites W2066636486 @default.
- W2888634710 cites W2080133951 @default.
- W2888634710 cites W2085040216 @default.
- W2888634710 cites W2087159174 @default.
- W2888634710 cites W2092902234 @default.
- W2888634710 cites W2094286023 @default.
- W2888634710 cites W2094450455 @default.
- W2888634710 cites W2100417396 @default.
- W2888634710 cites W2113989144 @default.
- W2888634710 cites W2140119009 @default.
- W2888634710 cites W2141136514 @default.
- W2888634710 cites W2145769341 @default.
- W2888634710 cites W2147152072 @default.
- W2888634710 cites W2161371014 @default.
- W2888634710 cites W2162362997 @default.
- W2888634710 cites W2165533158 @default.
- W2888634710 cites W2173587127 @default.
- W2888634710 cites W2233554446 @default.
- W2888634710 cites W2238216200 @default.
- W2888634710 cites W2271254379 @default.
- W2888634710 cites W2294137921 @default.
- W2888634710 cites W2300469216 @default.
- W2888634710 cites W2407642977 @default.
- W2888634710 cites W2494589370 @default.
- W2888634710 cites W2521492858 @default.
- W2888634710 cites W2523367416 @default.
- W2888634710 cites W2523679382 @default.
- W2888634710 cites W2532651260 @default.
- W2888634710 cites W2737852505 @default.
- W2888634710 cites W2754180233 @default.
- W2888634710 cites W281665770 @default.
- W2888634710 cites W2908054697 @default.
- W2888634710 cites W2962756421 @default.
- W2888634710 cites W3016718392 @default.
- W2888634710 cites W3104097132 @default.
- W2888634710 cites W4301213493 @default.
- W2888634710 doi "https://doi.org/10.3233/sw-180317" @default.
- W2888634710 hasPublicationYear "2019" @default.
- W2888634710 type Work @default.
- W2888634710 sameAs 2888634710 @default.
- W2888634710 citedByCount "106" @default.
- W2888634710 countsByYear W28886347102018 @default.
- W2888634710 countsByYear W28886347102019 @default.
- W2888634710 countsByYear W28886347102020 @default.
- W2888634710 countsByYear W28886347102021 @default.
- W2888634710 countsByYear W28886347102022 @default.
- W2888634710 countsByYear W28886347102023 @default.
- W2888634710 crossrefType "journal-article" @default.
- W2888634710 hasAuthorship W2888634710A5002796232 @default.
- W2888634710 hasAuthorship W2888634710A5034668928 @default.
- W2888634710 hasAuthorship W2888634710A5040542771 @default.
- W2888634710 hasAuthorship W2888634710A5045816451 @default.
- W2888634710 hasAuthorship W2888634710A5049314822 @default.
- W2888634710 hasBestOaLocation W28886347102 @default.
- W2888634710 hasConcept C132525143 @default.
- W2888634710 hasConcept C147497476 @default.
- W2888634710 hasConcept C2129575 @default.
- W2888634710 hasConcept C23123220 @default.
- W2888634710 hasConcept C41008148 @default.
- W2888634710 hasConcept C80444323 @default.
- W2888634710 hasConceptScore W2888634710C132525143 @default.
- W2888634710 hasConceptScore W2888634710C147497476 @default.
- W2888634710 hasConceptScore W2888634710C2129575 @default.