Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888702972> ?p ?o ?g. }
- W2888702972 endingPage "2834" @default.
- W2888702972 startingPage "2820" @default.
- W2888702972 abstract "In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sup> by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of 3D encoder-decoder and the conditional adversarial networks framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects." @default.
- W2888702972 created "2018-08-31" @default.
- W2888702972 creator A5005662573 @default.
- W2888702972 creator A5010637110 @default.
- W2888702972 creator A5047782253 @default.
- W2888702972 creator A5053684989 @default.
- W2888702972 creator A5060183988 @default.
- W2888702972 date "2019-12-01" @default.
- W2888702972 modified "2023-10-18" @default.
- W2888702972 title "Dense 3D Object Reconstruction from a Single Depth View" @default.
- W2888702972 cites W1893912098 @default.
- W2888702972 cites W1927784829 @default.
- W2888702972 cites W1953319329 @default.
- W2888702972 cites W1981349497 @default.
- W2888702972 cites W1987648924 @default.
- W2888702972 cites W1990345222 @default.
- W2888702972 cites W1992642990 @default.
- W2888702972 cites W2028541416 @default.
- W2888702972 cites W2033819227 @default.
- W2888702972 cites W2035379092 @default.
- W2888702972 cites W2041094000 @default.
- W2888702972 cites W2052069724 @default.
- W2888702972 cites W2071906076 @default.
- W2888702972 cites W2072202468 @default.
- W2888702972 cites W2097307110 @default.
- W2888702972 cites W2097374608 @default.
- W2888702972 cites W2108134361 @default.
- W2888702972 cites W2119493293 @default.
- W2888702972 cites W2143255850 @default.
- W2888702972 cites W2160126058 @default.
- W2888702972 cites W2160547335 @default.
- W2888702972 cites W2187027887 @default.
- W2888702972 cites W2250172176 @default.
- W2888702972 cites W2444097022 @default.
- W2888702972 cites W2557465155 @default.
- W2888702972 cites W2559882727 @default.
- W2888702972 cites W2582734987 @default.
- W2888702972 cites W2603429625 @default.
- W2888702972 cites W2605701576 @default.
- W2888702972 cites W2738835886 @default.
- W2888702972 cites W2748512037 @default.
- W2888702972 cites W2768376748 @default.
- W2888702972 cites W2962843993 @default.
- W2888702972 cites W2963150697 @default.
- W2888702972 cites W2963369474 @default.
- W2888702972 cites W2963426391 @default.
- W2888702972 cites W2963470893 @default.
- W2888702972 cites W2963600949 @default.
- W2888702972 cites W2963622297 @default.
- W2888702972 cites W2963648573 @default.
- W2888702972 cites W2963735494 @default.
- W2888702972 cites W2963739349 @default.
- W2888702972 cites W3102132650 @default.
- W2888702972 cites W4246840748 @default.
- W2888702972 cites W4250463896 @default.
- W2888702972 cites W4297792443 @default.
- W2888702972 doi "https://doi.org/10.1109/tpami.2018.2868195" @default.
- W2888702972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30183619" @default.
- W2888702972 hasPublicationYear "2019" @default.
- W2888702972 type Work @default.
- W2888702972 sameAs 2888702972 @default.
- W2888702972 citedByCount "79" @default.
- W2888702972 countsByYear W28887029722018 @default.
- W2888702972 countsByYear W28887029722019 @default.
- W2888702972 countsByYear W28887029722020 @default.
- W2888702972 countsByYear W28887029722021 @default.
- W2888702972 countsByYear W28887029722022 @default.
- W2888702972 countsByYear W28887029722023 @default.
- W2888702972 crossrefType "journal-article" @default.
- W2888702972 hasAuthorship W2888702972A5005662573 @default.
- W2888702972 hasAuthorship W2888702972A5010637110 @default.
- W2888702972 hasAuthorship W2888702972A5047782253 @default.
- W2888702972 hasAuthorship W2888702972A5053684989 @default.
- W2888702972 hasAuthorship W2888702972A5060183988 @default.
- W2888702972 hasBestOaLocation W28887029722 @default.
- W2888702972 hasConcept C109950114 @default.
- W2888702972 hasConcept C111919701 @default.
- W2888702972 hasConcept C118505674 @default.
- W2888702972 hasConcept C141379421 @default.
- W2888702972 hasConcept C153180895 @default.
- W2888702972 hasConcept C154945302 @default.
- W2888702972 hasConcept C17744445 @default.
- W2888702972 hasConcept C187691185 @default.
- W2888702972 hasConcept C199539241 @default.
- W2888702972 hasConcept C19966478 @default.
- W2888702972 hasConcept C2524010 @default.
- W2888702972 hasConcept C2776359362 @default.
- W2888702972 hasConcept C2781238097 @default.
- W2888702972 hasConcept C31972630 @default.
- W2888702972 hasConcept C33923547 @default.
- W2888702972 hasConcept C41008148 @default.
- W2888702972 hasConcept C54170458 @default.
- W2888702972 hasConcept C57077369 @default.
- W2888702972 hasConcept C90509273 @default.
- W2888702972 hasConcept C94625758 @default.
- W2888702972 hasConceptScore W2888702972C109950114 @default.
- W2888702972 hasConceptScore W2888702972C111919701 @default.
- W2888702972 hasConceptScore W2888702972C118505674 @default.