Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888710868> ?p ?o ?g. }
- W2888710868 abstract "In recent decades, detecting protein complexes (PCs) from protein-protein interaction networks (PPINs) has been an active area of research. There are a large number of excellent graph clustering methods that work very well for identifying PCs. However, most of existing methods usually overlook the inherent core-attachment organization of PCs. Therefore, these methods have three major limitations we should concern. Firstly, many methods have ignored the importance of selecting seed, especially without considering the impact of overlapping nodes as seed nodes. Thus, there may be false predictions. Secondly, PCs are generally supposed to be dense subgraphs. However, the subgraphs with high local modularity structure usually correspond to PCs. Thirdly, a number of available methods lack handling noise mechanism, and miss some peripheral proteins. In summary, all these challenging issues are very important for predicting more biological overlapping PCs.In this paper, to overcome these weaknesses, we propose a clustering method by core-attachment and local modularity structure, named CALM, to detect overlapping PCs from weighted PPINs with noises. Firstly, we identify overlapping nodes and seed nodes. Secondly, for a node, we calculate the support function between a node and a cluster. In CALM, a cluster which initially consists of only a seed node, is extended by adding its direct neighboring nodes recursively according to the support function, until this cluster forms a locally optimal modularity subgraph. Thirdly, we repeat this process for the remaining seed nodes. Finally, merging and removing procedures are carried out to obtain final predicted clusters. The experimental results show that CALM outperforms other classical methods, and achieves ideal overall performance. Furthermore, CALM can match more complexes with a higher accuracy and provide a better one-to-one mapping with reference complexes in all test datasets. Additionally, CALM is robust against the high rate of noise PPIN.By considering core-attachment and local modularity structure, CALM could detect PCs much more effectively than some representative methods. In short, CALM could potentially identify previous undiscovered overlapping PCs with various density and high modularity." @default.
- W2888710868 created "2018-08-31" @default.
- W2888710868 creator A5058655715 @default.
- W2888710868 creator A5066049192 @default.
- W2888710868 creator A5069298792 @default.
- W2888710868 creator A5090277607 @default.
- W2888710868 date "2018-08-22" @default.
- W2888710868 modified "2023-10-12" @default.
- W2888710868 title "Predicting overlapping protein complexes based on core-attachment and a local modularity structure" @default.
- W2888710868 cites W1485582261 @default.
- W2888710868 cites W1783384641 @default.
- W2888710868 cites W1971421925 @default.
- W2888710868 cites W1973508741 @default.
- W2888710868 cites W1979899431 @default.
- W2888710868 cites W1986214964 @default.
- W2888710868 cites W1988496202 @default.
- W2888710868 cites W1993734303 @default.
- W2888710868 cites W2010793412 @default.
- W2888710868 cites W2038492783 @default.
- W2888710868 cites W2050721857 @default.
- W2888710868 cites W2057793636 @default.
- W2888710868 cites W2081931663 @default.
- W2888710868 cites W2082565035 @default.
- W2888710868 cites W2087240661 @default.
- W2888710868 cites W2090422756 @default.
- W2888710868 cites W2100371004 @default.
- W2888710868 cites W2107067224 @default.
- W2888710868 cites W2112090702 @default.
- W2888710868 cites W2116117181 @default.
- W2888710868 cites W2116447934 @default.
- W2888710868 cites W2117720828 @default.
- W2888710868 cites W2118608338 @default.
- W2888710868 cites W2119359534 @default.
- W2888710868 cites W2123318061 @default.
- W2888710868 cites W2124166542 @default.
- W2888710868 cites W2128393152 @default.
- W2888710868 cites W2132993044 @default.
- W2888710868 cites W2134046693 @default.
- W2888710868 cites W2136850043 @default.
- W2888710868 cites W2138003801 @default.
- W2888710868 cites W2140280811 @default.
- W2888710868 cites W2140948740 @default.
- W2888710868 cites W2144393227 @default.
- W2888710868 cites W2150318080 @default.
- W2888710868 cites W2152495216 @default.
- W2888710868 cites W2159291387 @default.
- W2888710868 cites W2159710443 @default.
- W2888710868 cites W2160313295 @default.
- W2888710868 cites W2163480486 @default.
- W2888710868 cites W2164928285 @default.
- W2888710868 cites W2165533101 @default.
- W2888710868 cites W2171707538 @default.
- W2888710868 cites W2178465836 @default.
- W2888710868 cites W2497472168 @default.
- W2888710868 cites W2531496612 @default.
- W2888710868 cites W2556519015 @default.
- W2888710868 cites W2581439210 @default.
- W2888710868 cites W2623343908 @default.
- W2888710868 cites W2766356771 @default.
- W2888710868 cites W2771149454 @default.
- W2888710868 doi "https://doi.org/10.1186/s12859-018-2309-9" @default.
- W2888710868 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6106838" @default.
- W2888710868 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30134824" @default.
- W2888710868 hasPublicationYear "2018" @default.
- W2888710868 type Work @default.
- W2888710868 sameAs 2888710868 @default.
- W2888710868 citedByCount "23" @default.
- W2888710868 countsByYear W28887108682018 @default.
- W2888710868 countsByYear W28887108682019 @default.
- W2888710868 countsByYear W28887108682020 @default.
- W2888710868 countsByYear W28887108682021 @default.
- W2888710868 countsByYear W28887108682022 @default.
- W2888710868 countsByYear W28887108682023 @default.
- W2888710868 crossrefType "journal-article" @default.
- W2888710868 hasAuthorship W2888710868A5058655715 @default.
- W2888710868 hasAuthorship W2888710868A5066049192 @default.
- W2888710868 hasAuthorship W2888710868A5069298792 @default.
- W2888710868 hasAuthorship W2888710868A5090277607 @default.
- W2888710868 hasBestOaLocation W28887108681 @default.
- W2888710868 hasConcept C111919701 @default.
- W2888710868 hasConcept C124101348 @default.
- W2888710868 hasConcept C127413603 @default.
- W2888710868 hasConcept C132525143 @default.
- W2888710868 hasConcept C14036430 @default.
- W2888710868 hasConcept C154945302 @default.
- W2888710868 hasConcept C164866538 @default.
- W2888710868 hasConcept C2164484 @default.
- W2888710868 hasConcept C22047676 @default.
- W2888710868 hasConcept C2779478453 @default.
- W2888710868 hasConcept C31258907 @default.
- W2888710868 hasConcept C41008148 @default.
- W2888710868 hasConcept C54355233 @default.
- W2888710868 hasConcept C62611344 @default.
- W2888710868 hasConcept C66938386 @default.
- W2888710868 hasConcept C73555534 @default.
- W2888710868 hasConcept C76155785 @default.
- W2888710868 hasConcept C80444323 @default.
- W2888710868 hasConcept C86803240 @default.
- W2888710868 hasConcept C98045186 @default.
- W2888710868 hasConceptScore W2888710868C111919701 @default.