Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888749775> ?p ?o ?g. }
- W2888749775 endingPage "02010" @default.
- W2888749775 startingPage "02010" @default.
- W2888749775 abstract "The hypothesis of this research was that the maps based on remotely-sensed images would create zones of different vigor, yield, water status, winter hardiness and berry composition and the wines from the unique zones would show different chemical and sensorial profiles. A second hypothesis was that titer of grapevine leafroll-associated virus (GLRaV) could be correlated spatially to NDVI and other spectral indices. To determine zonation, unmanned aerial vehicles (UAVs) with multispectral and thermal sensors were flown over six Cabernet Franc vineyard blocks in Ontario, Canada. Zonation was based on NDVI values, and spatial correlations were examined between the NDVI and leaf water potential (Ψ), soil water content (SWC), stomatal conductance (g s ), winter hardiness (LT 50 ), vine size, yield, and berry composition. Additional NDVI data were acquired using GreenSeeker (proximal sensing), and both NDVI data sets produced maps of similar configuration. Several direct correlations were found between UAV-based NDVI and vine size, berry weight, yield, titratable acidity, SWC, leaf Ψ, g s , and NDVI from GreenSeeker. Inverse correlations included thermal data, Brix, color/ anthocyanins/ phenols, and LT 50 . The pattern of UAV-based NDVI and other variables corresponded to the PCA results. Thermal scan and GreenSeeker were useful tools for mapping variability in water status, yield components, and berry composition. In 2016, zoned maps were created based on UAV NDVI data, and grapes were harvested according to the separate zones. Additionally, spatial correlations between GLRaV titer and NDVI were observed. Use of UAVs may be able to delineate zones of differing vine size, yield components, and berry composition, as well as areas of different virus status and winter hardiness." @default.
- W2888749775 created "2018-08-31" @default.
- W2888749775 creator A5023239786 @default.
- W2888749775 creator A5046617838 @default.
- W2888749775 creator A5047756701 @default.
- W2888749775 creator A5052646546 @default.
- W2888749775 creator A5060190994 @default.
- W2888749775 creator A5060953568 @default.
- W2888749775 creator A5068454665 @default.
- W2888749775 creator A5068863762 @default.
- W2888749775 creator A5075214834 @default.
- W2888749775 creator A5078758869 @default.
- W2888749775 creator A5090532703 @default.
- W2888749775 creator A5091362918 @default.
- W2888749775 date "2018-01-01" @default.
- W2888749775 modified "2023-10-16" @default.
- W2888749775 title "Mapping Cabernet Franc vineyards by unmanned aerial vehicles (UAVs) for variability in vegetation indices, water status, and virus titer" @default.
- W2888749775 cites W1836164630 @default.
- W2888749775 cites W1973144503 @default.
- W2888749775 cites W1976633243 @default.
- W2888749775 cites W1980140116 @default.
- W2888749775 cites W1987544336 @default.
- W2888749775 cites W1998767864 @default.
- W2888749775 cites W1999938388 @default.
- W2888749775 cites W2000613913 @default.
- W2888749775 cites W2002320280 @default.
- W2888749775 cites W2007146840 @default.
- W2888749775 cites W2017014841 @default.
- W2888749775 cites W2023096685 @default.
- W2888749775 cites W2062982970 @default.
- W2888749775 cites W2070813784 @default.
- W2888749775 cites W2093882284 @default.
- W2888749775 cites W2100027277 @default.
- W2888749775 cites W2108787609 @default.
- W2888749775 cites W2131632403 @default.
- W2888749775 cites W2142087338 @default.
- W2888749775 cites W2147341427 @default.
- W2888749775 cites W2170232199 @default.
- W2888749775 cites W2281627593 @default.
- W2888749775 cites W2589140311 @default.
- W2888749775 cites W2615391525 @default.
- W2888749775 cites W4365388753 @default.
- W2888749775 cites W4376849535 @default.
- W2888749775 doi "https://doi.org/10.1051/e3sconf/20185002010" @default.
- W2888749775 hasPublicationYear "2018" @default.
- W2888749775 type Work @default.
- W2888749775 sameAs 2888749775 @default.
- W2888749775 citedByCount "2" @default.
- W2888749775 countsByYear W28887497752021 @default.
- W2888749775 crossrefType "journal-article" @default.
- W2888749775 hasAuthorship W2888749775A5023239786 @default.
- W2888749775 hasAuthorship W2888749775A5046617838 @default.
- W2888749775 hasAuthorship W2888749775A5047756701 @default.
- W2888749775 hasAuthorship W2888749775A5052646546 @default.
- W2888749775 hasAuthorship W2888749775A5060190994 @default.
- W2888749775 hasAuthorship W2888749775A5060953568 @default.
- W2888749775 hasAuthorship W2888749775A5068454665 @default.
- W2888749775 hasAuthorship W2888749775A5068863762 @default.
- W2888749775 hasAuthorship W2888749775A5075214834 @default.
- W2888749775 hasAuthorship W2888749775A5078758869 @default.
- W2888749775 hasAuthorship W2888749775A5090532703 @default.
- W2888749775 hasAuthorship W2888749775A5091362918 @default.
- W2888749775 hasBestOaLocation W28887497751 @default.
- W2888749775 hasConcept C134121241 @default.
- W2888749775 hasConcept C144027150 @default.
- W2888749775 hasConcept C1549246 @default.
- W2888749775 hasConcept C191897082 @default.
- W2888749775 hasConcept C192562407 @default.
- W2888749775 hasConcept C205649164 @default.
- W2888749775 hasConcept C25989453 @default.
- W2888749775 hasConcept C2776034682 @default.
- W2888749775 hasConcept C2780924976 @default.
- W2888749775 hasConcept C2781214258 @default.
- W2888749775 hasConcept C33923547 @default.
- W2888749775 hasConcept C39432304 @default.
- W2888749775 hasConcept C62649853 @default.
- W2888749775 hasConcept C6557445 @default.
- W2888749775 hasConcept C86803240 @default.
- W2888749775 hasConceptScore W2888749775C134121241 @default.
- W2888749775 hasConceptScore W2888749775C144027150 @default.
- W2888749775 hasConceptScore W2888749775C1549246 @default.
- W2888749775 hasConceptScore W2888749775C191897082 @default.
- W2888749775 hasConceptScore W2888749775C192562407 @default.
- W2888749775 hasConceptScore W2888749775C205649164 @default.
- W2888749775 hasConceptScore W2888749775C25989453 @default.
- W2888749775 hasConceptScore W2888749775C2776034682 @default.
- W2888749775 hasConceptScore W2888749775C2780924976 @default.
- W2888749775 hasConceptScore W2888749775C2781214258 @default.
- W2888749775 hasConceptScore W2888749775C33923547 @default.
- W2888749775 hasConceptScore W2888749775C39432304 @default.
- W2888749775 hasConceptScore W2888749775C62649853 @default.
- W2888749775 hasConceptScore W2888749775C6557445 @default.
- W2888749775 hasConceptScore W2888749775C86803240 @default.
- W2888749775 hasLocation W28887497751 @default.
- W2888749775 hasLocation W28887497752 @default.
- W2888749775 hasLocation W28887497753 @default.
- W2888749775 hasOpenAccess W2888749775 @default.
- W2888749775 hasPrimaryLocation W28887497751 @default.