Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888839559> ?p ?o ?g. }
- W2888839559 endingPage "1920" @default.
- W2888839559 startingPage "1911" @default.
- W2888839559 abstract "Self-propelled chemical motors are chemically powered micro- or nanosized swimmers. The energy required for these motors' active motion derives from catalytic chemical reactions and the transformation of a fuel dissolved in the solution. While self-propulsion is now well established for larger particles, it is still unclear if enzymes, nature's nanometer-sized catalysts, are potentially also self-powered nanomotors. Because of its small size, any increase in an enzyme's diffusion due to active self-propulsion must be observed on top of the enzyme's passive Brownian motion, which dominates at this scale. Fluorescence correlation spectroscopy (FCS) is a sensitive method to quantify the diffusion properties of single fluorescently labeled molecules in solution. FCS experiments have shown a general increase in the diffusion constant of a number of enzymes when the enzyme is catalytically active. Diffusion enhancements after addition of the enzyme's substrate (and sometimes its inhibitor) of up to 80% have been reported, which is at least 1 order of magnitude higher than what theory would predict. However, many factors contribute to the FCS signal and in particular the shape of the autocorrelation function, which underlies diffusion measurements by fluorescence correlation spectroscopy. These effects need to be considered to establish if and by how much the catalytic activity changes an enzyme's diffusion. We carefully review phenomena that can play a role in FCS experiments and the determination of enzyme diffusion, including the dissociation of enzyme oligomers upon interaction with the substrate, surface binding of the enzyme to glass during the experiment, conformational changes upon binding, and quenching of the fluorophore. We show that these effects can cause changes in the FCS signal that behave similar to an increase in diffusion. However, in the case of the enzymes F1-ATPase and alkaline phosphatase, we demonstrate that there is no measurable increase in enzyme diffusion. Rather, dissociation and conformational changes account for the changes in the FCS signal in the former and fluorophore quenching in the latter. Within the experimental accuracy of our FCS measurements, we do not observe any change in diffusion due to activity for the enzymes we have investigated. We suggest useful control experiments and additional tests for future FCS experiments that should help establish if the observed diffusion enhancement is real or if it is due to an experimental or data analysis artifact. We show that fluorescence lifetime and mean intensity measurements are essential in order to identify the nature of the observed changes in the autocorrelation function. While it is clear from theory that chemically active enzymes should also act as self-propelled nanomotors, our FCS measurements show that the associated increase in diffusion is much smaller than previously reported. Further experiments are needed to quantify the contribution of the enzymes' catalytic activity to their self-propulsion. We hope that our findings help to establish a useful protocol for future FCS studies in this field and help establish by how much the diffusion of an enzyme is enhanced through catalytic activity." @default.
- W2888839559 created "2018-09-07" @default.
- W2888839559 creator A5044178079 @default.
- W2888839559 creator A5065325931 @default.
- W2888839559 creator A5069620296 @default.
- W2888839559 date "2018-08-30" @default.
- W2888839559 modified "2023-10-17" @default.
- W2888839559 title "Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy" @default.
- W2888839559 cites W1803876176 @default.
- W2888839559 cites W1926857471 @default.
- W2888839559 cites W1968750506 @default.
- W2888839559 cites W1970666814 @default.
- W2888839559 cites W1977502222 @default.
- W2888839559 cites W2004610991 @default.
- W2888839559 cites W2006936795 @default.
- W2888839559 cites W2013453998 @default.
- W2888839559 cites W2022113913 @default.
- W2888839559 cites W2024263813 @default.
- W2888839559 cites W2032645679 @default.
- W2888839559 cites W2036970972 @default.
- W2888839559 cites W2043163044 @default.
- W2888839559 cites W2048607735 @default.
- W2888839559 cites W2049160104 @default.
- W2888839559 cites W2056734463 @default.
- W2888839559 cites W2063778151 @default.
- W2888839559 cites W2088069629 @default.
- W2888839559 cites W2088306031 @default.
- W2888839559 cites W2096869976 @default.
- W2888839559 cites W2117204128 @default.
- W2888839559 cites W2132629607 @default.
- W2888839559 cites W2134867392 @default.
- W2888839559 cites W2136965655 @default.
- W2888839559 cites W2142690324 @default.
- W2888839559 cites W2160661199 @default.
- W2888839559 cites W2167258646 @default.
- W2888839559 cites W2332621967 @default.
- W2888839559 cites W2441821972 @default.
- W2888839559 cites W2546731565 @default.
- W2888839559 cites W2561060295 @default.
- W2888839559 cites W2561134176 @default.
- W2888839559 cites W2591325750 @default.
- W2888839559 cites W2605643656 @default.
- W2888839559 cites W2611982930 @default.
- W2888839559 cites W2776366088 @default.
- W2888839559 cites W2780964015 @default.
- W2888839559 cites W2783136554 @default.
- W2888839559 cites W2804982042 @default.
- W2888839559 cites W4246296740 @default.
- W2888839559 doi "https://doi.org/10.1021/acs.accounts.8b00276" @default.
- W2888839559 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30160941" @default.
- W2888839559 hasPublicationYear "2018" @default.
- W2888839559 type Work @default.
- W2888839559 sameAs 2888839559 @default.
- W2888839559 citedByCount "68" @default.
- W2888839559 countsByYear W28888395592018 @default.
- W2888839559 countsByYear W28888395592019 @default.
- W2888839559 countsByYear W28888395592020 @default.
- W2888839559 countsByYear W28888395592021 @default.
- W2888839559 countsByYear W28888395592022 @default.
- W2888839559 countsByYear W28888395592023 @default.
- W2888839559 crossrefType "journal-article" @default.
- W2888839559 hasAuthorship W2888839559A5044178079 @default.
- W2888839559 hasAuthorship W2888839559A5065325931 @default.
- W2888839559 hasAuthorship W2888839559A5069620296 @default.
- W2888839559 hasBestOaLocation W28888395591 @default.
- W2888839559 hasConcept C111368507 @default.
- W2888839559 hasConcept C113196181 @default.
- W2888839559 hasConcept C121332964 @default.
- W2888839559 hasConcept C127313418 @default.
- W2888839559 hasConcept C144618238 @default.
- W2888839559 hasConcept C159467904 @default.
- W2888839559 hasConcept C161790260 @default.
- W2888839559 hasConcept C178790620 @default.
- W2888839559 hasConcept C181199279 @default.
- W2888839559 hasConcept C185592680 @default.
- W2888839559 hasConcept C2777289219 @default.
- W2888839559 hasConcept C32909587 @default.
- W2888839559 hasConcept C41183919 @default.
- W2888839559 hasConcept C69357855 @default.
- W2888839559 hasConcept C97355855 @default.
- W2888839559 hasConceptScore W2888839559C111368507 @default.
- W2888839559 hasConceptScore W2888839559C113196181 @default.
- W2888839559 hasConceptScore W2888839559C121332964 @default.
- W2888839559 hasConceptScore W2888839559C127313418 @default.
- W2888839559 hasConceptScore W2888839559C144618238 @default.
- W2888839559 hasConceptScore W2888839559C159467904 @default.
- W2888839559 hasConceptScore W2888839559C161790260 @default.
- W2888839559 hasConceptScore W2888839559C178790620 @default.
- W2888839559 hasConceptScore W2888839559C181199279 @default.
- W2888839559 hasConceptScore W2888839559C185592680 @default.
- W2888839559 hasConceptScore W2888839559C2777289219 @default.
- W2888839559 hasConceptScore W2888839559C32909587 @default.
- W2888839559 hasConceptScore W2888839559C41183919 @default.
- W2888839559 hasConceptScore W2888839559C69357855 @default.
- W2888839559 hasConceptScore W2888839559C97355855 @default.
- W2888839559 hasFunder F4320320879 @default.
- W2888839559 hasIssue "9" @default.
- W2888839559 hasLocation W28888395591 @default.