Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888904730> ?p ?o ?g. }
- W2888904730 endingPage "966" @default.
- W2888904730 startingPage "931" @default.
- W2888904730 abstract "Digital sensors provide long series of equispaced and often strongly correlated measurements. A rigorous treatment of this huge set of correlated measurements in a collocation approach is a big challenge. Standard procedures – applied in a thoughtless brute force approach – fail because these techniques are not suitable to handle such huge systems.In this article two different strategies, denoted as covariance approach and filter approach, to handle such huge systems are contrasted. In the covariance approach various decorrelation strategies based on different Cholesky approaches to factorize the variance/covariance matrices are reviewed. The focus is on arbitrary distributed data sets with a finite number of data. But also extensions to sparse systems resulting from finite covariance functions and on exploiting the Toeplitz structure which results in the case of equispaced systems are elaborated.Apart from that filter approaches are discussed to perform a prewhitening strategy for the data and rearrange the whole model to work with this filtered data in a rigorous way. Here, the special focus is on autoregressive processes to model the correlations. Finite, causal, non-recursive filters are constructed as prewhitening filters for the data as well as the model. This approach is extreme efficient, but can only deal with infinite equispaced data sets.In real data scenarios, finite sequences and data gaps must be handled as well. For the covariance approach this is straightforward but it is a serious problem for the filter approach. Therefore a combination of these approaches is constructed to select the best properties from each. Covariance matrices of equispaced data sets designed by recursively defined covariance sequences are represented by AR processes as well as by Cholesky factorized matrices. It is shown, that it is possible to switch between both strategies to get data gaps and the warm up phase for the filter approach under control." @default.
- W2888904730 created "2018-09-07" @default.
- W2888904730 creator A5026869397 @default.
- W2888904730 creator A5069635785 @default.
- W2888904730 date "2020-01-01" @default.
- W2888904730 modified "2023-09-24" @default.
- W2888904730 title "The Numerical Treatment of Covariance Stationary Processes in Least Squares Collocation" @default.
- W2888904730 cites W103069544 @default.
- W2888904730 cites W114896794 @default.
- W2888904730 cites W1518821062 @default.
- W2888904730 cites W1587896874 @default.
- W2888904730 cites W1611133743 @default.
- W2888904730 cites W1819022839 @default.
- W2888904730 cites W1981885118 @default.
- W2888904730 cites W2003712632 @default.
- W2888904730 cites W2007657257 @default.
- W2888904730 cites W2022823194 @default.
- W2888904730 cites W2030774493 @default.
- W2888904730 cites W2031887434 @default.
- W2888904730 cites W2047897276 @default.
- W2888904730 cites W2057958346 @default.
- W2888904730 cites W2071521572 @default.
- W2888904730 cites W2094561302 @default.
- W2888904730 cites W2095018839 @default.
- W2888904730 cites W2110484224 @default.
- W2888904730 cites W2137541800 @default.
- W2888904730 cites W2146834088 @default.
- W2888904730 cites W2152683735 @default.
- W2888904730 cites W2162443378 @default.
- W2888904730 cites W2163518664 @default.
- W2888904730 cites W2163899311 @default.
- W2888904730 cites W2326591006 @default.
- W2888904730 cites W2520483122 @default.
- W2888904730 cites W2798909945 @default.
- W2888904730 cites W2903697806 @default.
- W2888904730 cites W3123714093 @default.
- W2888904730 cites W594367418 @default.
- W2888904730 cites W62067533 @default.
- W2888904730 doi "https://doi.org/10.1007/978-3-662-55854-6_95" @default.
- W2888904730 hasPublicationYear "2020" @default.
- W2888904730 type Work @default.
- W2888904730 sameAs 2888904730 @default.
- W2888904730 citedByCount "3" @default.
- W2888904730 countsByYear W28889047302021 @default.
- W2888904730 countsByYear W28889047302022 @default.
- W2888904730 countsByYear W28889047302023 @default.
- W2888904730 crossrefType "book-chapter" @default.
- W2888904730 hasAuthorship W2888904730A5026869397 @default.
- W2888904730 hasAuthorship W2888904730A5069635785 @default.
- W2888904730 hasConcept C105795698 @default.
- W2888904730 hasConcept C106131492 @default.
- W2888904730 hasConcept C11413529 @default.
- W2888904730 hasConcept C120665830 @default.
- W2888904730 hasConcept C121332964 @default.
- W2888904730 hasConcept C126255220 @default.
- W2888904730 hasConcept C137250428 @default.
- W2888904730 hasConcept C158693339 @default.
- W2888904730 hasConcept C178650346 @default.
- W2888904730 hasConcept C185142706 @default.
- W2888904730 hasConcept C192209626 @default.
- W2888904730 hasConcept C31972630 @default.
- W2888904730 hasConcept C33923547 @default.
- W2888904730 hasConcept C34727166 @default.
- W2888904730 hasConcept C41008148 @default.
- W2888904730 hasConcept C62520636 @default.
- W2888904730 hasConcept C83042196 @default.
- W2888904730 hasConceptScore W2888904730C105795698 @default.
- W2888904730 hasConceptScore W2888904730C106131492 @default.
- W2888904730 hasConceptScore W2888904730C11413529 @default.
- W2888904730 hasConceptScore W2888904730C120665830 @default.
- W2888904730 hasConceptScore W2888904730C121332964 @default.
- W2888904730 hasConceptScore W2888904730C126255220 @default.
- W2888904730 hasConceptScore W2888904730C137250428 @default.
- W2888904730 hasConceptScore W2888904730C158693339 @default.
- W2888904730 hasConceptScore W2888904730C178650346 @default.
- W2888904730 hasConceptScore W2888904730C185142706 @default.
- W2888904730 hasConceptScore W2888904730C192209626 @default.
- W2888904730 hasConceptScore W2888904730C31972630 @default.
- W2888904730 hasConceptScore W2888904730C33923547 @default.
- W2888904730 hasConceptScore W2888904730C34727166 @default.
- W2888904730 hasConceptScore W2888904730C41008148 @default.
- W2888904730 hasConceptScore W2888904730C62520636 @default.
- W2888904730 hasConceptScore W2888904730C83042196 @default.
- W2888904730 hasLocation W28889047301 @default.
- W2888904730 hasOpenAccess W2888904730 @default.
- W2888904730 hasPrimaryLocation W28889047301 @default.
- W2888904730 hasRelatedWork W1973946014 @default.
- W2888904730 hasRelatedWork W1982714407 @default.
- W2888904730 hasRelatedWork W1996800782 @default.
- W2888904730 hasRelatedWork W2099216015 @default.
- W2888904730 hasRelatedWork W2104726544 @default.
- W2888904730 hasRelatedWork W2160306985 @default.
- W2888904730 hasRelatedWork W2553654357 @default.
- W2888904730 hasRelatedWork W3014345041 @default.
- W2888904730 hasRelatedWork W3119535756 @default.
- W2888904730 hasRelatedWork W4323566061 @default.
- W2888904730 isParatext "false" @default.
- W2888904730 isRetracted "false" @default.