Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888919072> ?p ?o ?g. }
- W2888919072 endingPage "1115" @default.
- W2888919072 startingPage "1108" @default.
- W2888919072 abstract "Abstract Motivation The RNA-guided CRISPR/Cas9 system has been widely applied to genome editing. CRISPR/Cas9 system can effectively edit the on-target genes. Nonetheless, it has recently been demonstrated that many homologous off-target genomic sequences could be mutated, leading to unexpected gene-editing outcomes. Therefore, a plethora of tools were proposed for the prediction of off-target activities of CRISPR/Cas9. Nonetheless, each computational tool has its own advantages and drawbacks under diverse conditions. It is hardly believed that a single tool is optimal for all conditions. Hence, we would like to explore the ensemble learning potential on synergizing multiple tools with genomic annotations together to enhance its predictive abilities. Results We proposed an ensemble learning framework which synergizes multiple tools together to predict the off-target activities of CRISPR/Cas9 in different combinations. Interestingly, the ensemble learning using AdaBoost outperformed other individual off-target predictive tools. We also investigated the effect of evolutionary conservation (PhyloP and PhastCons) and chromatin annotations (ChromHMM and Segway) and found that only PhyloP can enhance the predictive capabilities further. Case studies are conducted to reveal ensemble insights into the off-target predictions, demonstrating how the current study can be applied in different genomic contexts. The best prediction predicted by AdaBoost is up to 0.9383 (AUC) and 0.2998 (PRC) that outperforms other classifiers. This is ascribable to the fact that AdaBoost introduces a new weak classifier (i.e. decision stump) in each iteration to learn the DNA sequences that were misclassified as off-targets until a small error rate is reached iteratively. Availability and implementation The source codes are freely available on GitHub at https://github.com/Alexzsx/CRISPR. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2888919072 created "2018-09-07" @default.
- W2888919072 creator A5002127716 @default.
- W2888919072 creator A5030015771 @default.
- W2888919072 creator A5056567731 @default.
- W2888919072 creator A5066935890 @default.
- W2888919072 date "2018-08-31" @default.
- W2888919072 modified "2023-09-28" @default.
- W2888919072 title "Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications" @default.
- W2888919072 cites W1968342623 @default.
- W2888919072 cites W1990149668 @default.
- W2888919072 cites W2003171404 @default.
- W2888919072 cites W2003797386 @default.
- W2888919072 cites W2006373538 @default.
- W2888919072 cites W2018363492 @default.
- W2888919072 cites W2022321112 @default.
- W2888919072 cites W2036176224 @default.
- W2888919072 cites W2051255304 @default.
- W2888919072 cites W2070614858 @default.
- W2888919072 cites W2077659966 @default.
- W2888919072 cites W2085993152 @default.
- W2888919072 cites W2091140839 @default.
- W2888919072 cites W2096261947 @default.
- W2888919072 cites W2105464583 @default.
- W2888919072 cites W2115189270 @default.
- W2888919072 cites W2115603949 @default.
- W2888919072 cites W2117792884 @default.
- W2888919072 cites W2123746851 @default.
- W2888919072 cites W2128758977 @default.
- W2888919072 cites W2132401721 @default.
- W2888919072 cites W2134268326 @default.
- W2888919072 cites W2139212933 @default.
- W2888919072 cites W2139314409 @default.
- W2888919072 cites W2145782793 @default.
- W2888919072 cites W2157205823 @default.
- W2888919072 cites W2172149993 @default.
- W2888919072 cites W2173462356 @default.
- W2888919072 cites W2177540144 @default.
- W2888919072 cites W2224398381 @default.
- W2888919072 cites W2414904000 @default.
- W2888919072 cites W2461013690 @default.
- W2888919072 cites W2591777705 @default.
- W2888919072 cites W2593082148 @default.
- W2888919072 cites W2597038011 @default.
- W2888919072 cites W2611661371 @default.
- W2888919072 cites W2617546535 @default.
- W2888919072 cites W2673510916 @default.
- W2888919072 cites W2740810575 @default.
- W2888919072 cites W2741359145 @default.
- W2888919072 cites W2752453466 @default.
- W2888919072 cites W2755207988 @default.
- W2888919072 cites W2768013244 @default.
- W2888919072 cites W2802090278 @default.
- W2888919072 cites W2911964244 @default.
- W2888919072 cites W4230875896 @default.
- W2888919072 cites W4240252876 @default.
- W2888919072 doi "https://doi.org/10.1093/bioinformatics/bty748" @default.
- W2888919072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30169558" @default.
- W2888919072 hasPublicationYear "2018" @default.
- W2888919072 type Work @default.
- W2888919072 sameAs 2888919072 @default.
- W2888919072 citedByCount "21" @default.
- W2888919072 countsByYear W28889190722019 @default.
- W2888919072 countsByYear W28889190722020 @default.
- W2888919072 countsByYear W28889190722021 @default.
- W2888919072 countsByYear W28889190722022 @default.
- W2888919072 countsByYear W28889190722023 @default.
- W2888919072 crossrefType "journal-article" @default.
- W2888919072 hasAuthorship W2888919072A5002127716 @default.
- W2888919072 hasAuthorship W2888919072A5030015771 @default.
- W2888919072 hasAuthorship W2888919072A5056567731 @default.
- W2888919072 hasAuthorship W2888919072A5066935890 @default.
- W2888919072 hasConcept C104317684 @default.
- W2888919072 hasConcept C119857082 @default.
- W2888919072 hasConcept C132455925 @default.
- W2888919072 hasConcept C141404830 @default.
- W2888919072 hasConcept C144501496 @default.
- W2888919072 hasConcept C154945302 @default.
- W2888919072 hasConcept C41008148 @default.
- W2888919072 hasConcept C45942800 @default.
- W2888919072 hasConcept C54355233 @default.
- W2888919072 hasConcept C70721500 @default.
- W2888919072 hasConcept C86803240 @default.
- W2888919072 hasConcept C95623464 @default.
- W2888919072 hasConcept C98108389 @default.
- W2888919072 hasConceptScore W2888919072C104317684 @default.
- W2888919072 hasConceptScore W2888919072C119857082 @default.
- W2888919072 hasConceptScore W2888919072C132455925 @default.
- W2888919072 hasConceptScore W2888919072C141404830 @default.
- W2888919072 hasConceptScore W2888919072C144501496 @default.
- W2888919072 hasConceptScore W2888919072C154945302 @default.
- W2888919072 hasConceptScore W2888919072C41008148 @default.
- W2888919072 hasConceptScore W2888919072C45942800 @default.
- W2888919072 hasConceptScore W2888919072C54355233 @default.
- W2888919072 hasConceptScore W2888919072C70721500 @default.
- W2888919072 hasConceptScore W2888919072C86803240 @default.
- W2888919072 hasConceptScore W2888919072C95623464 @default.
- W2888919072 hasConceptScore W2888919072C98108389 @default.