Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888949514> ?p ?o ?g. }
- W2888949514 endingPage "170" @default.
- W2888949514 startingPage "147" @default.
- W2888949514 abstract "Abstract Activity detection and classification using different sensor modalities have emerged as revolutionary technology for real-time and autonomous monitoring in behaviour analysis, ambient assisted living, activity of daily living (ADL), elderly care, rehabilitations, entertainments and surveillance in smart home environments. Wearable devices, smart-phones and ambient environments devices are equipped with variety of sensors such as accelerometers, gyroscopes, magnetometer, heart rate, pressure and wearable camera for activity detection and monitoring. These sensors are pre-processed and different feature sets such as time domain, frequency domain, wavelet transform are extracted and transform using machine learning algorithm for human activity classification and monitoring. Recently, deep learning algorithms for automatic feature representation have also been proposed to lessen the burden of reliance on handcrafted features and to increase performance accuracy. Initially, one set of sensor data, features or classifiers were used for activity recognition applications. However, there are new trends on the implementation of fusion strategies to combine sensors data, features and classifiers to provide diversity, offer higher generalization, and tackle challenging issues. For instances, combination of inertial sensors provide mechanism to differentiate activity of similar patterns and accurate posture identification while other multimodal sensor data are used for energy expenditure estimations, object localizations in smart homes and health status monitoring. Hence, the focus of this review is to provide in-depth and comprehensive analysis of data fusion and multiple classifier systems techniques for human activity recognition with emphasis on mobile and wearable devices. First, data fusion methods and modalities were presented and also feature fusion, including deep learning fusion for human activity recognition were critically analysed, and their applications, strengths and issues were identified. Furthermore, the review presents different multiple classifier system design and fusion methods that were recently proposed in literature. Finally, open research problems that require further research and improvements are identified and discussed." @default.
- W2888949514 created "2018-09-07" @default.
- W2888949514 creator A5004858670 @default.
- W2888949514 creator A5030618085 @default.
- W2888949514 creator A5044186969 @default.
- W2888949514 creator A5082364037 @default.
- W2888949514 date "2019-03-01" @default.
- W2888949514 modified "2023-10-14" @default.
- W2888949514 title "Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions" @default.
- W2888949514 cites W1524877846 @default.
- W2888949514 cites W1832003755 @default.
- W2888949514 cites W1911418635 @default.
- W2888949514 cites W1963753144 @default.
- W2888949514 cites W1965506690 @default.
- W2888949514 cites W1968644670 @default.
- W2888949514 cites W1969069964 @default.
- W2888949514 cites W1972131791 @default.
- W2888949514 cites W1975043475 @default.
- W2888949514 cites W1976018856 @default.
- W2888949514 cites W1984489625 @default.
- W2888949514 cites W1988790447 @default.
- W2888949514 cites W1990104191 @default.
- W2888949514 cites W1993610369 @default.
- W2888949514 cites W1995529998 @default.
- W2888949514 cites W2003985931 @default.
- W2888949514 cites W2005069458 @default.
- W2888949514 cites W2005823174 @default.
- W2888949514 cites W2006943798 @default.
- W2888949514 cites W2007270964 @default.
- W2888949514 cites W2008146124 @default.
- W2888949514 cites W2012281465 @default.
- W2888949514 cites W2014431515 @default.
- W2888949514 cites W2018168021 @default.
- W2888949514 cites W2023302299 @default.
- W2888949514 cites W2025707815 @default.
- W2888949514 cites W2028811420 @default.
- W2888949514 cites W2029896651 @default.
- W2888949514 cites W2033891698 @default.
- W2888949514 cites W2035549557 @default.
- W2888949514 cites W2037402357 @default.
- W2888949514 cites W2038705219 @default.
- W2888949514 cites W2047222258 @default.
- W2888949514 cites W2051167698 @default.
- W2888949514 cites W2051397206 @default.
- W2888949514 cites W2054242744 @default.
- W2888949514 cites W2058917046 @default.
- W2888949514 cites W2060283959 @default.
- W2888949514 cites W2060663350 @default.
- W2888949514 cites W2064675550 @default.
- W2888949514 cites W2066338981 @default.
- W2888949514 cites W2072070523 @default.
- W2888949514 cites W2073165760 @default.
- W2888949514 cites W2074290069 @default.
- W2888949514 cites W2077309078 @default.
- W2888949514 cites W2085478833 @default.
- W2888949514 cites W2088469064 @default.
- W2888949514 cites W2089713804 @default.
- W2888949514 cites W2090283616 @default.
- W2888949514 cites W2094009506 @default.
- W2888949514 cites W2102548030 @default.
- W2888949514 cites W2104956067 @default.
- W2888949514 cites W2105320369 @default.
- W2888949514 cites W2105464873 @default.
- W2888949514 cites W2105934661 @default.
- W2888949514 cites W2106981652 @default.
- W2888949514 cites W2115629999 @default.
- W2888949514 cites W2118542129 @default.
- W2888949514 cites W2123585936 @default.
- W2888949514 cites W2127127580 @default.
- W2888949514 cites W2127231883 @default.
- W2888949514 cites W2128121198 @default.
- W2888949514 cites W2129004304 @default.
- W2888949514 cites W2133674562 @default.
- W2888949514 cites W2134524950 @default.
- W2888949514 cites W2136922672 @default.
- W2888949514 cites W2139336101 @default.
- W2888949514 cites W2140944144 @default.
- W2888949514 cites W2148048965 @default.
- W2888949514 cites W2148217011 @default.
- W2888949514 cites W2151834330 @default.
- W2888949514 cites W2151875561 @default.
- W2888949514 cites W2155268664 @default.
- W2888949514 cites W2155971774 @default.
- W2888949514 cites W2156855747 @default.
- W2888949514 cites W2157091296 @default.
- W2888949514 cites W2157331557 @default.
- W2888949514 cites W2166712377 @default.
- W2888949514 cites W2167101736 @default.
- W2888949514 cites W2168046285 @default.
- W2888949514 cites W2176950688 @default.
- W2888949514 cites W2184481998 @default.
- W2888949514 cites W2194940824 @default.
- W2888949514 cites W2195342085 @default.
- W2888949514 cites W2258703375 @default.
- W2888949514 cites W2259677467 @default.
- W2888949514 cites W2269209296 @default.
- W2888949514 cites W2270422077 @default.
- W2888949514 cites W2270470215 @default.