Matches in SemOpenAlex for { <https://semopenalex.org/work/W2888955024> ?p ?o ?g. }
- W2888955024 endingPage "1132" @default.
- W2888955024 startingPage "1125" @default.
- W2888955024 abstract "Abstract Motivation Recognition of different genomic signals and regions (GSRs) in DNA is crucial for understanding genome organization, gene regulation, and gene function, which in turn generate better genome and gene annotations. Although many methods have been developed to recognize GSRs, their pure computational identification remains challenging. Moreover, various GSRs usually require a specialized set of features for developing robust recognition models. Recently, deep-learning (DL) methods have been shown to generate more accurate prediction models than ‘shallow’ methods without the need to develop specialized features for the problems in question. Here, we explore the potential use of DL for the recognition of GSRs. Results We developed DeepGSR, an optimized DL architecture for the prediction of different types of GSRs. The performance of the DeepGSR structure is evaluated on the recognition of polyadenylation signals (PAS) and translation initiation sites (TIS) of different organisms: human, mouse, bovine and fruit fly. The results show that DeepGSR outperformed the state-of-the-art methods, reducing the classification error rate of the PAS and TIS prediction in the human genome by up to 29% and 86%, respectively. Moreover, the cross-organisms and genome-wide analyses we performed, confirmed the robustness of DeepGSR and provided new insights into the conservation of examined GSRs across species. Availability and implementation DeepGSR is implemented in Python using Keras API; it is available as open-source software and can be obtained at https://doi.org/10.5281/zenodo.1117159. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2888955024 created "2018-09-07" @default.
- W2888955024 creator A5001438860 @default.
- W2888955024 creator A5020891409 @default.
- W2888955024 creator A5050617056 @default.
- W2888955024 creator A5055569646 @default.
- W2888955024 date "2018-09-01" @default.
- W2888955024 modified "2023-10-16" @default.
- W2888955024 title "DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions" @default.
- W2888955024 cites W1019830208 @default.
- W2888955024 cites W1534196162 @default.
- W2888955024 cites W1980602152 @default.
- W2888955024 cites W1983808106 @default.
- W2888955024 cites W1984020445 @default.
- W2888955024 cites W1984357741 @default.
- W2888955024 cites W1985267020 @default.
- W2888955024 cites W2006074076 @default.
- W2888955024 cites W2008659594 @default.
- W2888955024 cites W2016043834 @default.
- W2888955024 cites W2027582332 @default.
- W2888955024 cites W2052406950 @default.
- W2888955024 cites W2093897670 @default.
- W2888955024 cites W2099305989 @default.
- W2888955024 cites W2101852192 @default.
- W2888955024 cites W2102619694 @default.
- W2888955024 cites W2104544277 @default.
- W2888955024 cites W2104979215 @default.
- W2888955024 cites W2105089812 @default.
- W2888955024 cites W2106678197 @default.
- W2888955024 cites W2118970397 @default.
- W2888955024 cites W2130200358 @default.
- W2888955024 cites W2131074700 @default.
- W2888955024 cites W2160075393 @default.
- W2888955024 cites W2169095038 @default.
- W2888955024 cites W2198606573 @default.
- W2888955024 cites W2216234219 @default.
- W2888955024 cites W2311607323 @default.
- W2888955024 cites W2336509392 @default.
- W2888955024 cites W2433743436 @default.
- W2888955024 cites W2464717012 @default.
- W2888955024 cites W2479945688 @default.
- W2888955024 cites W2493479438 @default.
- W2888955024 cites W2545753590 @default.
- W2888955024 cites W2610313513 @default.
- W2888955024 cites W2691984185 @default.
- W2888955024 cites W270103414 @default.
- W2888955024 cites W2750490914 @default.
- W2888955024 cites W2765326405 @default.
- W2888955024 cites W2766352633 @default.
- W2888955024 cites W2791848964 @default.
- W2888955024 cites W2794004073 @default.
- W2888955024 cites W2919115771 @default.
- W2888955024 cites W2950890882 @default.
- W2888955024 cites W2963739921 @default.
- W2888955024 cites W3138798301 @default.
- W2888955024 cites W4297168595 @default.
- W2888955024 cites W7721663 @default.
- W2888955024 cites W77962058 @default.
- W2888955024 doi "https://doi.org/10.1093/bioinformatics/bty752" @default.
- W2888955024 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6449759" @default.
- W2888955024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30184052" @default.
- W2888955024 hasPublicationYear "2018" @default.
- W2888955024 type Work @default.
- W2888955024 sameAs 2888955024 @default.
- W2888955024 citedByCount "46" @default.
- W2888955024 countsByYear W28889550242019 @default.
- W2888955024 countsByYear W28889550242020 @default.
- W2888955024 countsByYear W28889550242021 @default.
- W2888955024 countsByYear W28889550242022 @default.
- W2888955024 countsByYear W28889550242023 @default.
- W2888955024 crossrefType "journal-article" @default.
- W2888955024 hasAuthorship W2888955024A5001438860 @default.
- W2888955024 hasAuthorship W2888955024A5020891409 @default.
- W2888955024 hasAuthorship W2888955024A5050617056 @default.
- W2888955024 hasAuthorship W2888955024A5055569646 @default.
- W2888955024 hasBestOaLocation W28889550241 @default.
- W2888955024 hasConcept C104317684 @default.
- W2888955024 hasConcept C105565629 @default.
- W2888955024 hasConcept C111919701 @default.
- W2888955024 hasConcept C119857082 @default.
- W2888955024 hasConcept C141231307 @default.
- W2888955024 hasConcept C142575336 @default.
- W2888955024 hasConcept C153180895 @default.
- W2888955024 hasConcept C154945302 @default.
- W2888955024 hasConcept C199360897 @default.
- W2888955024 hasConcept C2777904410 @default.
- W2888955024 hasConcept C41008148 @default.
- W2888955024 hasConcept C519991488 @default.
- W2888955024 hasConcept C54355233 @default.
- W2888955024 hasConcept C63479239 @default.
- W2888955024 hasConcept C67705224 @default.
- W2888955024 hasConcept C70721500 @default.
- W2888955024 hasConcept C86803240 @default.
- W2888955024 hasConceptScore W2888955024C104317684 @default.
- W2888955024 hasConceptScore W2888955024C105565629 @default.
- W2888955024 hasConceptScore W2888955024C111919701 @default.
- W2888955024 hasConceptScore W2888955024C119857082 @default.
- W2888955024 hasConceptScore W2888955024C141231307 @default.