Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889062017> ?p ?o ?g. }
- W2889062017 endingPage "292" @default.
- W2889062017 startingPage "281" @default.
- W2889062017 abstract "Oil price data have a complicated multi-scale structure that may vary with time. We use time-frequency analysis to identify the main features of these variations and, in particular, the regime shifts. The analysis is based on a wavelet-based decomposition and analysis of the associated scale spectrum. The joint estimation of the local Hurst exponent and volatility is the key to detect and identify regime shifting and switching of the oil price. The framework involves in particular modeling in terms of a process of `multi-fractional' type so that both the roughness and the volatility of the price process may vary with time. Special epochs then emerge as a result of these degrees of freedom, moreover, as a result of the special type of spectral estimator used. These special epochs are discussed and related to historical events. Some of them are not detected by standard analysis based on maximum likelihood estimation. The paper presents a novel algorithm for robust detection of such special epochs and multi-fractional behavior in financial or other types of data. In the financial context insight about such behavior of the asset price is important to evaluate financial contracts involving the asset." @default.
- W2889062017 created "2018-09-07" @default.
- W2889062017 creator A5023971789 @default.
- W2889062017 creator A5076372723 @default.
- W2889062017 date "2019-05-01" @default.
- W2889062017 modified "2023-09-25" @default.
- W2889062017 title "Emergence of turbulent epochs in oil prices" @default.
- W2889062017 cites W1550023159 @default.
- W2889062017 cites W1572967710 @default.
- W2889062017 cites W1598649019 @default.
- W2889062017 cites W1976955071 @default.
- W2889062017 cites W1977159695 @default.
- W2889062017 cites W1979259289 @default.
- W2889062017 cites W1983889844 @default.
- W2889062017 cites W1993817335 @default.
- W2889062017 cites W1999367385 @default.
- W2889062017 cites W2021760137 @default.
- W2889062017 cites W2026237857 @default.
- W2889062017 cites W2031753087 @default.
- W2889062017 cites W2036653664 @default.
- W2889062017 cites W2038902078 @default.
- W2889062017 cites W2052659370 @default.
- W2889062017 cites W2060539744 @default.
- W2889062017 cites W2062341532 @default.
- W2889062017 cites W2062962812 @default.
- W2889062017 cites W2069523214 @default.
- W2889062017 cites W2071113651 @default.
- W2889062017 cites W2072647566 @default.
- W2889062017 cites W2075124914 @default.
- W2889062017 cites W2120281739 @default.
- W2889062017 cites W2166296979 @default.
- W2889062017 cites W2169342941 @default.
- W2889062017 cites W2482609895 @default.
- W2889062017 cites W2523759904 @default.
- W2889062017 cites W2539100490 @default.
- W2889062017 cites W2558513639 @default.
- W2889062017 cites W2590218058 @default.
- W2889062017 cites W2595406006 @default.
- W2889062017 cites W2623729930 @default.
- W2889062017 cites W2747375131 @default.
- W2889062017 cites W2759779370 @default.
- W2889062017 cites W2762360192 @default.
- W2889062017 cites W2762513653 @default.
- W2889062017 cites W2763065660 @default.
- W2889062017 cites W2770945174 @default.
- W2889062017 cites W2793264542 @default.
- W2889062017 doi "https://doi.org/10.1016/j.chaos.2019.03.016" @default.
- W2889062017 hasPublicationYear "2019" @default.
- W2889062017 type Work @default.
- W2889062017 sameAs 2889062017 @default.
- W2889062017 citedByCount "3" @default.
- W2889062017 countsByYear W28890620172019 @default.
- W2889062017 countsByYear W28890620172020 @default.
- W2889062017 countsByYear W28890620172022 @default.
- W2889062017 crossrefType "journal-article" @default.
- W2889062017 hasAuthorship W2889062017A5023971789 @default.
- W2889062017 hasAuthorship W2889062017A5076372723 @default.
- W2889062017 hasBestOaLocation W28890620174 @default.
- W2889062017 hasConcept C105795698 @default.
- W2889062017 hasConcept C149782125 @default.
- W2889062017 hasConcept C151730666 @default.
- W2889062017 hasConcept C154945302 @default.
- W2889062017 hasConcept C185429906 @default.
- W2889062017 hasConcept C2779343474 @default.
- W2889062017 hasConcept C33923547 @default.
- W2889062017 hasConcept C41008148 @default.
- W2889062017 hasConcept C47432892 @default.
- W2889062017 hasConcept C85393063 @default.
- W2889062017 hasConcept C86803240 @default.
- W2889062017 hasConcept C91602232 @default.
- W2889062017 hasConcept C96835011 @default.
- W2889062017 hasConceptScore W2889062017C105795698 @default.
- W2889062017 hasConceptScore W2889062017C149782125 @default.
- W2889062017 hasConceptScore W2889062017C151730666 @default.
- W2889062017 hasConceptScore W2889062017C154945302 @default.
- W2889062017 hasConceptScore W2889062017C185429906 @default.
- W2889062017 hasConceptScore W2889062017C2779343474 @default.
- W2889062017 hasConceptScore W2889062017C33923547 @default.
- W2889062017 hasConceptScore W2889062017C41008148 @default.
- W2889062017 hasConceptScore W2889062017C47432892 @default.
- W2889062017 hasConceptScore W2889062017C85393063 @default.
- W2889062017 hasConceptScore W2889062017C86803240 @default.
- W2889062017 hasConceptScore W2889062017C91602232 @default.
- W2889062017 hasConceptScore W2889062017C96835011 @default.
- W2889062017 hasLocation W28890620171 @default.
- W2889062017 hasLocation W28890620172 @default.
- W2889062017 hasLocation W28890620173 @default.
- W2889062017 hasLocation W28890620174 @default.
- W2889062017 hasLocation W28890620175 @default.
- W2889062017 hasOpenAccess W2889062017 @default.
- W2889062017 hasPrimaryLocation W28890620171 @default.
- W2889062017 hasRelatedWork W2039282896 @default.
- W2889062017 hasRelatedWork W2070631162 @default.
- W2889062017 hasRelatedWork W2267037803 @default.
- W2889062017 hasRelatedWork W2272989938 @default.
- W2889062017 hasRelatedWork W2990266878 @default.
- W2889062017 hasRelatedWork W3122498106 @default.
- W2889062017 hasRelatedWork W3125273850 @default.