Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889193398> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2889193398 abstract "Assigning sentiment labels to documents is, at first sight, a standard multi-label classification task. As such, it seems likely that standard machine learning algorithms such as deep neural networks (DNNs) will provide an effective approach. We describe an alternative approach, involving the construction of a weighted lexicon of sentiment terms, which significantly outperforms the use of DNNs. The moral of the story is that DNNs are not a universal panacea, and that paying attention to the nature of the data that you are trying to learn from can be more important than trying out ever more powerful general purpose machine learning algorithms." @default.
- W2889193398 created "2018-09-07" @default.
- W2889193398 creator A5035477242 @default.
- W2889193398 creator A5064029058 @default.
- W2889193398 creator A5076326163 @default.
- W2889193398 date "2018-01-01" @default.
- W2889193398 modified "2023-09-27" @default.
- W2889193398 title "Explorations in Sentiment Mining for Arabic and English Tweets" @default.
- W2889193398 cites W1971222444 @default.
- W2889193398 cites W2805744755 @default.
- W2889193398 cites W2963712766 @default.
- W2889193398 cites W2964225211 @default.
- W2889193398 doi "https://doi.org/10.1007/978-3-319-99344-7_2" @default.
- W2889193398 hasPublicationYear "2018" @default.
- W2889193398 type Work @default.
- W2889193398 sameAs 2889193398 @default.
- W2889193398 citedByCount "0" @default.
- W2889193398 crossrefType "book-chapter" @default.
- W2889193398 hasAuthorship W2889193398A5035477242 @default.
- W2889193398 hasAuthorship W2889193398A5064029058 @default.
- W2889193398 hasAuthorship W2889193398A5076326163 @default.
- W2889193398 hasConcept C119857082 @default.
- W2889193398 hasConcept C138885662 @default.
- W2889193398 hasConcept C142724271 @default.
- W2889193398 hasConcept C154945302 @default.
- W2889193398 hasConcept C162324750 @default.
- W2889193398 hasConcept C187736073 @default.
- W2889193398 hasConcept C204321447 @default.
- W2889193398 hasConcept C204787440 @default.
- W2889193398 hasConcept C26993612 @default.
- W2889193398 hasConcept C2778121359 @default.
- W2889193398 hasConcept C2780451532 @default.
- W2889193398 hasConcept C2984842247 @default.
- W2889193398 hasConcept C41008148 @default.
- W2889193398 hasConcept C41895202 @default.
- W2889193398 hasConcept C50644808 @default.
- W2889193398 hasConcept C66402592 @default.
- W2889193398 hasConcept C71924100 @default.
- W2889193398 hasConcept C96455323 @default.
- W2889193398 hasConceptScore W2889193398C119857082 @default.
- W2889193398 hasConceptScore W2889193398C138885662 @default.
- W2889193398 hasConceptScore W2889193398C142724271 @default.
- W2889193398 hasConceptScore W2889193398C154945302 @default.
- W2889193398 hasConceptScore W2889193398C162324750 @default.
- W2889193398 hasConceptScore W2889193398C187736073 @default.
- W2889193398 hasConceptScore W2889193398C204321447 @default.
- W2889193398 hasConceptScore W2889193398C204787440 @default.
- W2889193398 hasConceptScore W2889193398C26993612 @default.
- W2889193398 hasConceptScore W2889193398C2778121359 @default.
- W2889193398 hasConceptScore W2889193398C2780451532 @default.
- W2889193398 hasConceptScore W2889193398C2984842247 @default.
- W2889193398 hasConceptScore W2889193398C41008148 @default.
- W2889193398 hasConceptScore W2889193398C41895202 @default.
- W2889193398 hasConceptScore W2889193398C50644808 @default.
- W2889193398 hasConceptScore W2889193398C66402592 @default.
- W2889193398 hasConceptScore W2889193398C71924100 @default.
- W2889193398 hasConceptScore W2889193398C96455323 @default.
- W2889193398 hasLocation W28891933981 @default.
- W2889193398 hasOpenAccess W2889193398 @default.
- W2889193398 hasPrimaryLocation W28891933981 @default.
- W2889193398 hasRelatedWork W1530327797 @default.
- W2889193398 hasRelatedWork W2017489100 @default.
- W2889193398 hasRelatedWork W2024691726 @default.
- W2889193398 hasRelatedWork W2733520819 @default.
- W2889193398 hasRelatedWork W2786749325 @default.
- W2889193398 hasRelatedWork W2799100448 @default.
- W2889193398 hasRelatedWork W2809032542 @default.
- W2889193398 hasRelatedWork W2901922204 @default.
- W2889193398 hasRelatedWork W2965617872 @default.
- W2889193398 hasRelatedWork W2966614482 @default.
- W2889193398 hasRelatedWork W2972632927 @default.
- W2889193398 hasRelatedWork W2997049449 @default.
- W2889193398 hasRelatedWork W3007809684 @default.
- W2889193398 hasRelatedWork W3031409689 @default.
- W2889193398 hasRelatedWork W3032112198 @default.
- W2889193398 hasRelatedWork W3080191145 @default.
- W2889193398 hasRelatedWork W3192794374 @default.
- W2889193398 hasRelatedWork W3197380479 @default.
- W2889193398 hasRelatedWork W3213914898 @default.
- W2889193398 hasRelatedWork W77738637 @default.
- W2889193398 isParatext "false" @default.
- W2889193398 isRetracted "false" @default.
- W2889193398 magId "2889193398" @default.
- W2889193398 workType "book-chapter" @default.