Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889303625> ?p ?o ?g. }
- W2889303625 endingPage "49" @default.
- W2889303625 startingPage "49" @default.
- W2889303625 abstract "In recent years, on-chip interconnects have been considered as one of the most challenging areas in ultra-large scale integration. In ultra-small feature size, the interconnect delay becomes more pronounced than the gate delay. The continuous scaling of interconnects introduces significant parasitic effects. The resistivity of interconnects increases because of the grain boundary scattering and side wall scattering of electrons. An increased Joule heating and the low current carrying capability of interconnects in a nano-scale dimension make it unreliable for future technology. The devices resistivity and reliability have become more and more serious problems for choosing the best interconnect materials, like Cu, W, and others. Because of its remarkable electrical and its other properties, graphene becomes a reliable candidate for next-generation interconnects. Graphene is the lowest resistivity material with a high current density, large mean free path, and high electron mobility. For practical implementation, narrow width graphene sheet or graphene nanoribbon (GNR) is the most suitable interconnect material. However, the geometric structure changes the electrical property of GNR to a small extent compared to the ideal behavior of graphene film. In the current article, the structural and electrical properties of single and multilayer GNRs are discussed in detail. Also, the fabrication techniques are discussed so as to pattern the graphene nanoribbons for interconnect application and measurement. A circuit modeling of the resistive-inductive-capacitive distributed network for multilayer GNR interconnects is incorporated in the article, and the corresponding simulated results are compared with the measured data. The performance of GNR interconnects is discussed from the view of the resistivity, resistive-capacitive delay, energy delay product, crosstalk effect, stability analysis, and so on. The performance of GNR interconnects is well compared with the conventional interconnects, like Cu, and other futuristic potential materials, like carbon nanotube and doped GNRs, for different technology nodes of the International Technology Roadmap for Semiconductors (ITRS)." @default.
- W2889303625 created "2018-09-07" @default.
- W2889303625 creator A5016423872 @default.
- W2889303625 creator A5090378468 @default.
- W2889303625 date "2018-08-30" @default.
- W2889303625 modified "2023-10-17" @default.
- W2889303625 title "Graphene Nanoribbon as Potential On-Chip Interconnect Material—A Review" @default.
- W2889303625 cites W1869901036 @default.
- W2889303625 cites W1964178484 @default.
- W2889303625 cites W1967006277 @default.
- W2889303625 cites W1967789761 @default.
- W2889303625 cites W1971985289 @default.
- W2889303625 cites W1974507420 @default.
- W2889303625 cites W1974513150 @default.
- W2889303625 cites W1983208835 @default.
- W2889303625 cites W1983301463 @default.
- W2889303625 cites W1985700440 @default.
- W2889303625 cites W1986980084 @default.
- W2889303625 cites W1987988749 @default.
- W2889303625 cites W1989853749 @default.
- W2889303625 cites W1992330719 @default.
- W2889303625 cites W1993959268 @default.
- W2889303625 cites W1997231270 @default.
- W2889303625 cites W2015917682 @default.
- W2889303625 cites W2031457512 @default.
- W2889303625 cites W2041139925 @default.
- W2889303625 cites W2045416062 @default.
- W2889303625 cites W2045956059 @default.
- W2889303625 cites W2051509762 @default.
- W2889303625 cites W2054121966 @default.
- W2889303625 cites W2056616725 @default.
- W2889303625 cites W2057641426 @default.
- W2889303625 cites W2070292451 @default.
- W2889303625 cites W2072923279 @default.
- W2889303625 cites W2073110701 @default.
- W2889303625 cites W2074880343 @default.
- W2889303625 cites W2089947380 @default.
- W2889303625 cites W2092831789 @default.
- W2889303625 cites W2098429456 @default.
- W2889303625 cites W2103497259 @default.
- W2889303625 cites W2103707735 @default.
- W2889303625 cites W2108368155 @default.
- W2889303625 cites W2115756303 @default.
- W2889303625 cites W2119882629 @default.
- W2889303625 cites W2121772044 @default.
- W2889303625 cites W2125740733 @default.
- W2889303625 cites W2126934395 @default.
- W2889303625 cites W2133708550 @default.
- W2889303625 cites W2137631811 @default.
- W2889303625 cites W2138159532 @default.
- W2889303625 cites W2139216877 @default.
- W2889303625 cites W2141368806 @default.
- W2889303625 cites W2143717061 @default.
- W2889303625 cites W2147299203 @default.
- W2889303625 cites W2153812188 @default.
- W2889303625 cites W2155223168 @default.
- W2889303625 cites W2155709168 @default.
- W2889303625 cites W2160019980 @default.
- W2889303625 cites W2167478831 @default.
- W2889303625 cites W2170539287 @default.
- W2889303625 cites W2171086793 @default.
- W2889303625 cites W2177385490 @default.
- W2889303625 cites W2239744244 @default.
- W2889303625 cites W2292283885 @default.
- W2889303625 cites W2301069622 @default.
- W2889303625 cites W2323692549 @default.
- W2889303625 cites W2411386900 @default.
- W2889303625 cites W2519445895 @default.
- W2889303625 cites W2526647690 @default.
- W2889303625 cites W2533228317 @default.
- W2889303625 cites W2555462004 @default.
- W2889303625 cites W2562244986 @default.
- W2889303625 cites W2581385437 @default.
- W2889303625 cites W2583731647 @default.
- W2889303625 cites W2591685051 @default.
- W2889303625 cites W2626474002 @default.
- W2889303625 cites W2734953229 @default.
- W2889303625 cites W2790955560 @default.
- W2889303625 cites W3099854949 @default.
- W2889303625 cites W3100726178 @default.
- W2889303625 cites W3101026607 @default.
- W2889303625 cites W3101816280 @default.
- W2889303625 cites W3103228885 @default.
- W2889303625 cites W3104129236 @default.
- W2889303625 cites W571989434 @default.
- W2889303625 doi "https://doi.org/10.3390/c4030049" @default.
- W2889303625 hasPublicationYear "2018" @default.
- W2889303625 type Work @default.
- W2889303625 sameAs 2889303625 @default.
- W2889303625 citedByCount "25" @default.
- W2889303625 countsByYear W28893036252019 @default.
- W2889303625 countsByYear W28893036252020 @default.
- W2889303625 countsByYear W28893036252021 @default.
- W2889303625 countsByYear W28893036252022 @default.
- W2889303625 countsByYear W28893036252023 @default.
- W2889303625 crossrefType "journal-article" @default.
- W2889303625 hasAuthorship W2889303625A5016423872 @default.
- W2889303625 hasAuthorship W2889303625A5090378468 @default.