Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889319910> ?p ?o ?g. }
- W2889319910 endingPage "213" @default.
- W2889319910 startingPage "204" @default.
- W2889319910 abstract "Traditional probabilistic skyline query over uncertain data returns a tuple of individual recommendations for customers. However, the uncertainty of the dataset brings the possibility that the recommendation is not correct. Once the incorrect candidate is recommended, user needs to query the skyline again (may use a higher probability threshold) and tries to find alternatives. This greatly hurts user experience for those recommendation scenarios where finding out query results to be wrong brings non-negligible sunk cost, such as spending time to visit a recommended interest point. To address this concern, we propose a novel M-Skyline query model that takes consideration of sunk cost and offers backup recommendation. Moreover, in order to optimize the query speed for finding such M-Skyline results, we devise several fast query algorithms. Extensive experiments with both real and synthetic datasets demonstrate the effectiveness and efficiency of our proposed algorithms under various scenarios." @default.
- W2889319910 created "2018-09-07" @default.
- W2889319910 creator A5016800957 @default.
- W2889319910 creator A5018453698 @default.
- W2889319910 creator A5020408458 @default.
- W2889319910 creator A5021910535 @default.
- W2889319910 creator A5078793726 @default.
- W2889319910 creator A5087894632 @default.
- W2889319910 date "2019-01-01" @default.
- W2889319910 modified "2023-10-18" @default.
- W2889319910 title "M-Skyline: Taking sunk cost and alternative recommendation in consideration for skyline query on uncertain data" @default.
- W2889319910 cites W1256248941 @default.
- W2889319910 cites W1965745537 @default.
- W2889319910 cites W1966743391 @default.
- W2889319910 cites W1971806600 @default.
- W2889319910 cites W1972541019 @default.
- W2889319910 cites W1979149757 @default.
- W2889319910 cites W1986325821 @default.
- W2889319910 cites W1994045304 @default.
- W2889319910 cites W1997884755 @default.
- W2889319910 cites W2005376135 @default.
- W2889319910 cites W2017682168 @default.
- W2889319910 cites W2018020240 @default.
- W2889319910 cites W2027675779 @default.
- W2889319910 cites W2041984268 @default.
- W2889319910 cites W2055458930 @default.
- W2889319910 cites W2062262281 @default.
- W2889319910 cites W2077902965 @default.
- W2889319910 cites W2086026231 @default.
- W2889319910 cites W2098338547 @default.
- W2889319910 cites W2110529497 @default.
- W2889319910 cites W2140977160 @default.
- W2889319910 cites W2170940478 @default.
- W2889319910 cites W2246109554 @default.
- W2889319910 cites W2356949840 @default.
- W2889319910 cites W2466409142 @default.
- W2889319910 cites W2492317651 @default.
- W2889319910 cites W2588538374 @default.
- W2889319910 cites W2607439137 @default.
- W2889319910 doi "https://doi.org/10.1016/j.knosys.2018.08.024" @default.
- W2889319910 hasPublicationYear "2019" @default.
- W2889319910 type Work @default.
- W2889319910 sameAs 2889319910 @default.
- W2889319910 citedByCount "31" @default.
- W2889319910 countsByYear W28893199102019 @default.
- W2889319910 countsByYear W28893199102020 @default.
- W2889319910 countsByYear W28893199102021 @default.
- W2889319910 countsByYear W28893199102022 @default.
- W2889319910 countsByYear W28893199102023 @default.
- W2889319910 crossrefType "journal-article" @default.
- W2889319910 hasAuthorship W2889319910A5016800957 @default.
- W2889319910 hasAuthorship W2889319910A5018453698 @default.
- W2889319910 hasAuthorship W2889319910A5020408458 @default.
- W2889319910 hasAuthorship W2889319910A5021910535 @default.
- W2889319910 hasAuthorship W2889319910A5078793726 @default.
- W2889319910 hasAuthorship W2889319910A5087894632 @default.
- W2889319910 hasConcept C118615104 @default.
- W2889319910 hasConcept C118930307 @default.
- W2889319910 hasConcept C124101348 @default.
- W2889319910 hasConcept C154945302 @default.
- W2889319910 hasConcept C23123220 @default.
- W2889319910 hasConcept C2524010 @default.
- W2889319910 hasConcept C2780757406 @default.
- W2889319910 hasConcept C2780945871 @default.
- W2889319910 hasConcept C28719098 @default.
- W2889319910 hasConcept C33923547 @default.
- W2889319910 hasConcept C41008148 @default.
- W2889319910 hasConcept C49937458 @default.
- W2889319910 hasConcept C77088390 @default.
- W2889319910 hasConceptScore W2889319910C118615104 @default.
- W2889319910 hasConceptScore W2889319910C118930307 @default.
- W2889319910 hasConceptScore W2889319910C124101348 @default.
- W2889319910 hasConceptScore W2889319910C154945302 @default.
- W2889319910 hasConceptScore W2889319910C23123220 @default.
- W2889319910 hasConceptScore W2889319910C2524010 @default.
- W2889319910 hasConceptScore W2889319910C2780757406 @default.
- W2889319910 hasConceptScore W2889319910C2780945871 @default.
- W2889319910 hasConceptScore W2889319910C28719098 @default.
- W2889319910 hasConceptScore W2889319910C33923547 @default.
- W2889319910 hasConceptScore W2889319910C41008148 @default.
- W2889319910 hasConceptScore W2889319910C49937458 @default.
- W2889319910 hasConceptScore W2889319910C77088390 @default.
- W2889319910 hasFunder F4320321001 @default.
- W2889319910 hasLocation W28893199101 @default.
- W2889319910 hasOpenAccess W2889319910 @default.
- W2889319910 hasPrimaryLocation W28893199101 @default.
- W2889319910 hasRelatedWork W105581752 @default.
- W2889319910 hasRelatedWork W196494569 @default.
- W2889319910 hasRelatedWork W1970070170 @default.
- W2889319910 hasRelatedWork W1989627675 @default.
- W2889319910 hasRelatedWork W2102046842 @default.
- W2889319910 hasRelatedWork W2163693507 @default.
- W2889319910 hasRelatedWork W2215991614 @default.
- W2889319910 hasRelatedWork W2232711191 @default.
- W2889319910 hasRelatedWork W2338204141 @default.
- W2889319910 hasRelatedWork W2940831414 @default.
- W2889319910 hasVolume "163" @default.
- W2889319910 isParatext "false" @default.