Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889348110> ?p ?o ?g. }
- W2889348110 endingPage "2854" @default.
- W2889348110 startingPage "2833" @default.
- W2889348110 abstract "This study focuses on predicting stock closing prices by using recurrent neural networks (RNNs). A long short-term memory (LSTM) model, a type of RNN coupled with stock basic trading data and technical indicators, is introduced as a novel method to predict the closing price of the stock market. We realize dimension reduction for the technical indicators by conducting principal component analysis (PCA). To train the model, some optimization strategies are followed, including adaptive moment estimation (Adam) and Glorot uniform initialization. Case studies are conducted on Standard & Poor's 500, NASDAQ, and Apple (AAPL). Plenty of comparison experiments are performed using a series of evaluation criteria to evaluate this model. Accurate prediction of stock market is considered an extremely challenging task because of the noisy environment and high volatility associated with the external factors. We hope the methodology we propose advances the research for analyzing and predicting stock time series. As the results of experiments suggest, the proposed model achieves a good level of fitness." @default.
- W2889348110 created "2018-09-07" @default.
- W2889348110 creator A5021099152 @default.
- W2889348110 creator A5052594325 @default.
- W2889348110 date "2018-10-01" @default.
- W2889348110 modified "2023-10-06" @default.
- W2889348110 title "Improving Stock Closing Price Prediction Using Recurrent Neural Network and Technical Indicators" @default.
- W2889348110 cites W1086310491 @default.
- W2889348110 cites W1815264562 @default.
- W2889348110 cites W1880086759 @default.
- W2889348110 cites W1989467508 @default.
- W2889348110 cites W1997342558 @default.
- W2889348110 cites W1999233885 @default.
- W2889348110 cites W2000920768 @default.
- W2889348110 cites W2005161603 @default.
- W2889348110 cites W2016210396 @default.
- W2889348110 cites W2024804972 @default.
- W2889348110 cites W2025291942 @default.
- W2889348110 cites W2032550340 @default.
- W2889348110 cites W2043335908 @default.
- W2889348110 cites W2054918769 @default.
- W2889348110 cites W2056704409 @default.
- W2889348110 cites W2066795664 @default.
- W2889348110 cites W2078282181 @default.
- W2889348110 cites W2090902788 @default.
- W2889348110 cites W2092281935 @default.
- W2889348110 cites W2125441666 @default.
- W2889348110 cites W2128728535 @default.
- W2889348110 cites W2136848157 @default.
- W2889348110 cites W2153570080 @default.
- W2889348110 cites W2163611833 @default.
- W2889348110 cites W2209610041 @default.
- W2889348110 cites W2330707230 @default.
- W2889348110 cites W2335134956 @default.
- W2889348110 cites W2517540742 @default.
- W2889348110 cites W2523498403 @default.
- W2889348110 cites W2530912024 @default.
- W2889348110 cites W2593842564 @default.
- W2889348110 cites W2786492859 @default.
- W2889348110 cites W2919115771 @default.
- W2889348110 cites W565911946 @default.
- W2889348110 doi "https://doi.org/10.1162/neco_a_01124" @default.
- W2889348110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30148707" @default.
- W2889348110 hasPublicationYear "2018" @default.
- W2889348110 type Work @default.
- W2889348110 sameAs 2889348110 @default.
- W2889348110 citedByCount "56" @default.
- W2889348110 countsByYear W28893481102019 @default.
- W2889348110 countsByYear W28893481102020 @default.
- W2889348110 countsByYear W28893481102021 @default.
- W2889348110 countsByYear W28893481102022 @default.
- W2889348110 countsByYear W28893481102023 @default.
- W2889348110 crossrefType "journal-article" @default.
- W2889348110 hasAuthorship W2889348110A5021099152 @default.
- W2889348110 hasAuthorship W2889348110A5052594325 @default.
- W2889348110 hasConcept C10138342 @default.
- W2889348110 hasConcept C114466953 @default.
- W2889348110 hasConcept C119857082 @default.
- W2889348110 hasConcept C127413603 @default.
- W2889348110 hasConcept C147168706 @default.
- W2889348110 hasConcept C149782125 @default.
- W2889348110 hasConcept C151406439 @default.
- W2889348110 hasConcept C151730666 @default.
- W2889348110 hasConcept C154945302 @default.
- W2889348110 hasConcept C162324750 @default.
- W2889348110 hasConcept C199360897 @default.
- W2889348110 hasConcept C204036174 @default.
- W2889348110 hasConcept C27438332 @default.
- W2889348110 hasConcept C2778775528 @default.
- W2889348110 hasConcept C2780299701 @default.
- W2889348110 hasConcept C2780762169 @default.
- W2889348110 hasConcept C33923547 @default.
- W2889348110 hasConcept C41008148 @default.
- W2889348110 hasConcept C50644808 @default.
- W2889348110 hasConcept C78519656 @default.
- W2889348110 hasConcept C86803240 @default.
- W2889348110 hasConcept C91602232 @default.
- W2889348110 hasConceptScore W2889348110C10138342 @default.
- W2889348110 hasConceptScore W2889348110C114466953 @default.
- W2889348110 hasConceptScore W2889348110C119857082 @default.
- W2889348110 hasConceptScore W2889348110C127413603 @default.
- W2889348110 hasConceptScore W2889348110C147168706 @default.
- W2889348110 hasConceptScore W2889348110C149782125 @default.
- W2889348110 hasConceptScore W2889348110C151406439 @default.
- W2889348110 hasConceptScore W2889348110C151730666 @default.
- W2889348110 hasConceptScore W2889348110C154945302 @default.
- W2889348110 hasConceptScore W2889348110C162324750 @default.
- W2889348110 hasConceptScore W2889348110C199360897 @default.
- W2889348110 hasConceptScore W2889348110C204036174 @default.
- W2889348110 hasConceptScore W2889348110C27438332 @default.
- W2889348110 hasConceptScore W2889348110C2778775528 @default.
- W2889348110 hasConceptScore W2889348110C2780299701 @default.
- W2889348110 hasConceptScore W2889348110C2780762169 @default.
- W2889348110 hasConceptScore W2889348110C33923547 @default.
- W2889348110 hasConceptScore W2889348110C41008148 @default.
- W2889348110 hasConceptScore W2889348110C50644808 @default.
- W2889348110 hasConceptScore W2889348110C78519656 @default.
- W2889348110 hasConceptScore W2889348110C86803240 @default.