Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889352707> ?p ?o ?g. }
- W2889352707 endingPage "16" @default.
- W2889352707 startingPage "1" @default.
- W2889352707 abstract "Biomass-explicit biogeochemical models assign microbial growth yields (Y) using values measured in the laboratory or predicted using thermodynamics-based methods. However, Y values are rarely measured under the low energy delivery conditions that often prevail in the subsurface, and existing predictive methods for calculating Y values when the catabolic energy supply rate is limited remain poorly tested. Here, we derive and validate a new semi-theoretical method for calculating Y values: the Gibbs Energy Dynamic Yield Method (GEDYM). Method validation relies on a compilation of 132 geochemically relevant literature Y values comprising predominantly (60%) low energy (> −25 kJ (mol e−)−1) metabolisms. GEDYM is based on estimating the Gibbs energy change of the metabolic reaction (ΔGmet), which links the Gibbs energy changes of the catabolic (ΔGcat) and anabolic (ΔGan) reactions of a microorganism through its growth yield. Given that the values of ΔGmet,ΔGcat and ΔGan all depend on their respective reaction quotients, the resulting Y values account for changes in the chemical environment surrounding the cells. GEDYM incorporates an empirical relationship that accurately estimates the extent to which ΔGmet deviates from its standard state value from the relative difference between ΔGcat and its corresponding standard state value. GEDYM yields Y values with lower relative errors and statistical bias than the existing Gibbs energy dissipation method (GEDM). Using dissimilatory iron reduction, sulfate reduction and methanogenesis as examples, we illustrate the importance of considering variations in ΔGcat and ΔGan when predicting Y values for individual metabolisms. Because of its ability to dynamically adjust the values of ΔGmet and Y to variable geochemical conditions, GEDYM yields a more realistic representation of geomicrobial activity in predictive reactive transport models." @default.
- W2889352707 created "2018-09-07" @default.
- W2889352707 creator A5004989641 @default.
- W2889352707 creator A5037707164 @default.
- W2889352707 date "2018-11-01" @default.
- W2889352707 modified "2023-10-17" @default.
- W2889352707 title "Gibbs Energy Dynamic Yield Method (GEDYM): Predicting microbial growth yields under energy-limiting conditions" @default.
- W2889352707 cites W1551729926 @default.
- W2889352707 cites W1570124823 @default.
- W2889352707 cites W1587078830 @default.
- W2889352707 cites W1587198095 @default.
- W2889352707 cites W1599149536 @default.
- W2889352707 cites W1830623917 @default.
- W2889352707 cites W1929539987 @default.
- W2889352707 cites W1965849849 @default.
- W2889352707 cites W1966497610 @default.
- W2889352707 cites W1969051824 @default.
- W2889352707 cites W1970175341 @default.
- W2889352707 cites W1973201965 @default.
- W2889352707 cites W1976472470 @default.
- W2889352707 cites W1981536763 @default.
- W2889352707 cites W1988220957 @default.
- W2889352707 cites W2001816002 @default.
- W2889352707 cites W2004104261 @default.
- W2889352707 cites W2008345303 @default.
- W2889352707 cites W2016695863 @default.
- W2889352707 cites W2021292622 @default.
- W2889352707 cites W2022411959 @default.
- W2889352707 cites W2028492105 @default.
- W2889352707 cites W2034935928 @default.
- W2889352707 cites W2039789484 @default.
- W2889352707 cites W2050475061 @default.
- W2889352707 cites W2054300247 @default.
- W2889352707 cites W2061493800 @default.
- W2889352707 cites W2063906411 @default.
- W2889352707 cites W2070075418 @default.
- W2889352707 cites W2071546884 @default.
- W2889352707 cites W2075863876 @default.
- W2889352707 cites W2076988330 @default.
- W2889352707 cites W2079476794 @default.
- W2889352707 cites W2081381690 @default.
- W2889352707 cites W2090512212 @default.
- W2889352707 cites W2090970630 @default.
- W2889352707 cites W2098326276 @default.
- W2889352707 cites W2100563176 @default.
- W2889352707 cites W2104518648 @default.
- W2889352707 cites W2104747811 @default.
- W2889352707 cites W2105845193 @default.
- W2889352707 cites W2109069424 @default.
- W2889352707 cites W2112515372 @default.
- W2889352707 cites W2113143547 @default.
- W2889352707 cites W2118215239 @default.
- W2889352707 cites W2118901151 @default.
- W2889352707 cites W2120724509 @default.
- W2889352707 cites W2121080215 @default.
- W2889352707 cites W2121785865 @default.
- W2889352707 cites W2122054539 @default.
- W2889352707 cites W21229488 @default.
- W2889352707 cites W2133806567 @default.
- W2889352707 cites W2136503976 @default.
- W2889352707 cites W2136874716 @default.
- W2889352707 cites W2142073035 @default.
- W2889352707 cites W2148378599 @default.
- W2889352707 cites W2149107663 @default.
- W2889352707 cites W2160914057 @default.
- W2889352707 cites W2161164464 @default.
- W2889352707 cites W2162835432 @default.
- W2889352707 cites W2254481979 @default.
- W2889352707 cites W2264430260 @default.
- W2889352707 cites W2317731040 @default.
- W2889352707 cites W2326380944 @default.
- W2889352707 cites W2330707684 @default.
- W2889352707 cites W2394838997 @default.
- W2889352707 cites W2410434693 @default.
- W2889352707 cites W2416065856 @default.
- W2889352707 cites W2603061425 @default.
- W2889352707 cites W2614283331 @default.
- W2889352707 cites W4232012457 @default.
- W2889352707 doi "https://doi.org/10.1016/j.gca.2018.08.023" @default.
- W2889352707 hasPublicationYear "2018" @default.
- W2889352707 type Work @default.
- W2889352707 sameAs 2889352707 @default.
- W2889352707 citedByCount "38" @default.
- W2889352707 countsByYear W28893527072019 @default.
- W2889352707 countsByYear W28893527072020 @default.
- W2889352707 countsByYear W28893527072021 @default.
- W2889352707 countsByYear W28893527072022 @default.
- W2889352707 countsByYear W28893527072023 @default.
- W2889352707 crossrefType "journal-article" @default.
- W2889352707 hasAuthorship W2889352707A5004989641 @default.
- W2889352707 hasAuthorship W2889352707A5037707164 @default.
- W2889352707 hasBestOaLocation W28893527071 @default.
- W2889352707 hasConcept C1008401 @default.
- W2889352707 hasConcept C121332964 @default.
- W2889352707 hasConcept C134121241 @default.
- W2889352707 hasConcept C146477669 @default.
- W2889352707 hasConcept C185592680 @default.
- W2889352707 hasConcept C55493867 @default.