Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889355390> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2889355390 abstract "Spatially structured bursts of propagating neural activity revealed in cortical slice experiments and in vivo tantalise many scientists on their possible functional mechanisms. Theoretical studies suggest waves with complex firing patterns afford a great capacity for the transmission of information across the brain. This thesis develops a framework for analysing the dynamics of such waves within spiking neuronal networks. We seek to investigate important questions concerning how the wave’s spatiotemporal voltage properties, propagation speed and spike time interval distributions depend on the underlying network structure and the intrinsic features of the neurons that make up the network. These are often difficult to extract with biophysically detailed network models. We therefore analyse simplified spiking networks of synaptically connected neurons, capable of supporting a rich repertoire of propagating activity, yet, amenable to mathematical analysis. Useful information is then obtained on the dynamics of waves found in this network in relation to the model’s parameters. These results can be compared to the findings obtained from more detailed computational studies and experimental observations.Numerical simulations in discrete networks of integrate-and-fire neurons reveal localised bumps that can wander diffusively across the network. These wandering bumps are seen to evolve into persistent synchronous coherent propagating structures, where neurons fire multiple times as the wave envelope passes over. We call these structures multiple-spike waves. An intrinsic feature of the neuron, describing how quickly neurons process synaptic current, is shown to be an important determinant in the emergent network activity.Waves with different number of spiking events co-exist across most parameter regimes, and with lateral-inhibition synaptic connectivity structure, can exhibit large variability in wave speed that has not been reported in studies of networks with purely excitatory connectivity. As a result, we investigate the interaction dynamics of multiple-spike waves on a large spatial domain. Here we find that multiple-spikes waves can merge to form a composite system, with greater complexity in the firing patterns, increasing the wave’s information content.Mathematical progress is made by studying a partial integro-differential equation that is equivalent to the discrete network as the number of neurons tends to infinity. We develop a method of solving the wave speed of the multiple spike waves and its set of spike-times, which then allows us to construct the network’s exact voltage and synaptic profiles and formulate a non-local eigenvalue problem to compute asymptotic stability. This is achieved by considering general perturbations around the wave’s firing times.An in-depth numerical study on the multiple-spike wave’s bifurcation structure is performed, uncovering various mechanisms behind propagation failure and how the wave’s dynamics depend on the network’s system parameters. The analysis of waves with a large number of spikes poses interesting questions regarding the existence of stationary bump solutions in the continuum limit.Uncertainty quantification is performed on waves, revealing how different types of uncertainty in system parameters influence the wave solutions statistical properties. This allows for predictions of the spatial regions of the waves profile most vulnerable to destabilisation.We finally analyse synaptically generated waves in a similar spiking network of Morris-Lecar neurons, where we find interesting transitions from single to double spike waves. Also, similar to what was seen in the integrate-and-fire network, the wave’s dynamics at the network level is strongly influenced by the neuron’s intrinsic features." @default.
- W2889355390 created "2018-09-07" @default.
- W2889355390 creator A5019068125 @default.
- W2889355390 date "2018-07-19" @default.
- W2889355390 modified "2023-09-23" @default.
- W2889355390 title "Analysis and dynamics of multiple-spike waves in neural networks" @default.
- W2889355390 hasPublicationYear "2018" @default.
- W2889355390 type Work @default.
- W2889355390 sameAs 2889355390 @default.
- W2889355390 citedByCount "0" @default.
- W2889355390 crossrefType "dissertation" @default.
- W2889355390 hasAuthorship W2889355390A5019068125 @default.
- W2889355390 hasConcept C115903868 @default.
- W2889355390 hasConcept C11731999 @default.
- W2889355390 hasConcept C118403218 @default.
- W2889355390 hasConcept C118615104 @default.
- W2889355390 hasConcept C119857082 @default.
- W2889355390 hasConcept C121332964 @default.
- W2889355390 hasConcept C123757187 @default.
- W2889355390 hasConcept C154945302 @default.
- W2889355390 hasConcept C169760540 @default.
- W2889355390 hasConcept C186060115 @default.
- W2889355390 hasConcept C2781390188 @default.
- W2889355390 hasConcept C33923547 @default.
- W2889355390 hasConcept C41008148 @default.
- W2889355390 hasConcept C50644808 @default.
- W2889355390 hasConcept C761482 @default.
- W2889355390 hasConcept C76155785 @default.
- W2889355390 hasConcept C86803240 @default.
- W2889355390 hasConceptScore W2889355390C115903868 @default.
- W2889355390 hasConceptScore W2889355390C11731999 @default.
- W2889355390 hasConceptScore W2889355390C118403218 @default.
- W2889355390 hasConceptScore W2889355390C118615104 @default.
- W2889355390 hasConceptScore W2889355390C119857082 @default.
- W2889355390 hasConceptScore W2889355390C121332964 @default.
- W2889355390 hasConceptScore W2889355390C123757187 @default.
- W2889355390 hasConceptScore W2889355390C154945302 @default.
- W2889355390 hasConceptScore W2889355390C169760540 @default.
- W2889355390 hasConceptScore W2889355390C186060115 @default.
- W2889355390 hasConceptScore W2889355390C2781390188 @default.
- W2889355390 hasConceptScore W2889355390C33923547 @default.
- W2889355390 hasConceptScore W2889355390C41008148 @default.
- W2889355390 hasConceptScore W2889355390C50644808 @default.
- W2889355390 hasConceptScore W2889355390C761482 @default.
- W2889355390 hasConceptScore W2889355390C76155785 @default.
- W2889355390 hasConceptScore W2889355390C86803240 @default.
- W2889355390 hasLocation W28893553901 @default.
- W2889355390 hasOpenAccess W2889355390 @default.
- W2889355390 hasPrimaryLocation W28893553901 @default.
- W2889355390 hasRelatedWork W1629672667 @default.
- W2889355390 hasRelatedWork W187512805 @default.
- W2889355390 hasRelatedWork W1976472626 @default.
- W2889355390 hasRelatedWork W2040848713 @default.
- W2889355390 hasRelatedWork W2041234363 @default.
- W2889355390 hasRelatedWork W2083613130 @default.
- W2889355390 hasRelatedWork W2089997881 @default.
- W2889355390 hasRelatedWork W2470231541 @default.
- W2889355390 hasRelatedWork W2527753128 @default.
- W2889355390 hasRelatedWork W2530989086 @default.
- W2889355390 hasRelatedWork W2610528998 @default.
- W2889355390 hasRelatedWork W2752853841 @default.
- W2889355390 hasRelatedWork W2781779417 @default.
- W2889355390 hasRelatedWork W2782702060 @default.
- W2889355390 hasRelatedWork W2904785367 @default.
- W2889355390 hasRelatedWork W2963122291 @default.
- W2889355390 hasRelatedWork W2977416671 @default.
- W2889355390 hasRelatedWork W3086742661 @default.
- W2889355390 hasRelatedWork W65634740 @default.
- W2889355390 isParatext "false" @default.
- W2889355390 isRetracted "false" @default.
- W2889355390 magId "2889355390" @default.
- W2889355390 workType "dissertation" @default.