Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889462839> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2889462839 endingPage "10" @default.
- W2889462839 startingPage "9" @default.
- W2889462839 abstract "Electron tomography applied to spectroscopic signals in the scanning transmission electron microscope (STEM) offers the possibility for quantitative determination of structure‐chemistry relationships with nanometre spatial resolution. Electron energy loss spectroscopy (EELS) and X‐ray energy dispersive spectroscopy (EDS), however, often require long exposure times or high beam currents for sufficient data quality for spectral tomography. Many materials samples are not sufficiently stable under the electron beam for the prolonged irradiation times necessary for conventional tilt‐series acquisition and back‐projection tomographic reconstruction schemes using STEM spectrum imaging signals. Reduced dose acquisition strategies will, in general, require the use of fewer projections for tilt‐series electron tomography because signals with sufficient signal‐to‐noise must be recorded on the respective detectors for quantitative chemical reconstructions, establishing a limit on the minimum acquisition time for individual spectrum images using current detector technologies. While methods such as compressive sensing electron tomography (CS‐ET) [1] show promise for reducing the number of projections required for successful tomographic reconstructions, combining information from multiple simultaneous imaging modes in the STEM provides a complementary strategy for further reducing electron dose in spectral tomography. Simultaneously acquired signals that offer structural contrast information (e.g. ADF STEM, low‐loss EELS, qualitative EDS tomography) in many cases enable the spectral tomography problem to be re‐cast as a recovery problem with reduced dimensionality. The 3D reconstruction of spectral data can then be recovered quantitatively from substantially fewer spectrum images. In the case of surface plasmon modes of silver particles, ADF STEM tomography has already been applied in conjunction with EELS spectrum imaging to reconstruct the surface charge distributions [2], a two‐dimensional reconstruction problem (on a surface) defined in three‐dimensional spatial coordinates. This approach has been extended to the recovery of voxel spectra from the cloudy zone, a spinodal decomposition of Fe‐Ni in the Tazewell meteorite (Figure 1). Due to minimal ADF STEM contrast, qualitative EDS tomography using the Ni K‐alpha signal was analysed for structural segmentation of the sample volume. Re‐projections of the extracted binarized volumes for each of the two phases were then used as a thickness‐series to re‐cast the recovery problem as an overdetermined system of linear equations, assuming homogeneous composition within each phase. The spectral intensity at each energy channel was decomposed according to the thickness data for each phase available at each pixel in the two‐dimensional spectrum images, allowing relative spectral intensities to be attributed to the voxels assigned to each of the two phases. The resulting tomographically unmixed spectra enabled improved EDS quantification of the relative Fe‐Ni ratios in each phase, giving results within 2% of quantification by atom probe tomography of similar material from the cloudy zone of the Tazewell meteorite. Applications to core‐loss STEM‐EELS analyses will be presented, further extending this family of methods to cases involving plural‐scattering corrections implemented in conjunction with the linear thickness unmixing approach. Comparisons of signal unmixing determined from multi‐modal structural and spectral tomography and blind‐source separation methods (e.g. non‐negative matrix factorization or independent component analysis) of two‐dimensional spectrum image data will also be discussed." @default.
- W2889462839 created "2018-09-07" @default.
- W2889462839 creator A5012358414 @default.
- W2889462839 creator A5023271151 @default.
- W2889462839 creator A5042485567 @default.
- W2889462839 creator A5058626262 @default.
- W2889462839 creator A5060405614 @default.
- W2889462839 creator A5061724338 @default.
- W2889462839 date "2016-12-20" @default.
- W2889462839 modified "2023-09-26" @default.
- W2889462839 title "Multi-modal electron tomography for 3D spectroscopic analysis using limited projections" @default.
- W2889462839 cites W2232072422 @default.
- W2889462839 cites W2323264224 @default.
- W2889462839 doi "https://doi.org/10.1002/9783527808465.emc2016.5183" @default.
- W2889462839 hasPublicationYear "2016" @default.
- W2889462839 type Work @default.
- W2889462839 sameAs 2889462839 @default.
- W2889462839 citedByCount "1" @default.
- W2889462839 countsByYear W28894628392022 @default.
- W2889462839 crossrefType "other" @default.
- W2889462839 hasAuthorship W2889462839A5012358414 @default.
- W2889462839 hasAuthorship W2889462839A5023271151 @default.
- W2889462839 hasAuthorship W2889462839A5042485567 @default.
- W2889462839 hasAuthorship W2889462839A5058626262 @default.
- W2889462839 hasAuthorship W2889462839A5060405614 @default.
- W2889462839 hasAuthorship W2889462839A5061724338 @default.
- W2889462839 hasBestOaLocation W28894628391 @default.
- W2889462839 hasConcept C120665830 @default.
- W2889462839 hasConcept C121332964 @default.
- W2889462839 hasConcept C146088050 @default.
- W2889462839 hasConcept C163716698 @default.
- W2889462839 hasConcept C192562407 @default.
- W2889462839 hasConcept C193016168 @default.
- W2889462839 hasConcept C75806775 @default.
- W2889462839 hasConcept C94915269 @default.
- W2889462839 hasConcept C97742081 @default.
- W2889462839 hasConceptScore W2889462839C120665830 @default.
- W2889462839 hasConceptScore W2889462839C121332964 @default.
- W2889462839 hasConceptScore W2889462839C146088050 @default.
- W2889462839 hasConceptScore W2889462839C163716698 @default.
- W2889462839 hasConceptScore W2889462839C192562407 @default.
- W2889462839 hasConceptScore W2889462839C193016168 @default.
- W2889462839 hasConceptScore W2889462839C75806775 @default.
- W2889462839 hasConceptScore W2889462839C94915269 @default.
- W2889462839 hasConceptScore W2889462839C97742081 @default.
- W2889462839 hasLocation W28894628391 @default.
- W2889462839 hasOpenAccess W2889462839 @default.
- W2889462839 hasPrimaryLocation W28894628391 @default.
- W2889462839 hasRelatedWork W1553455999 @default.
- W2889462839 hasRelatedWork W1998100702 @default.
- W2889462839 hasRelatedWork W2020303982 @default.
- W2889462839 hasRelatedWork W2053155454 @default.
- W2889462839 hasRelatedWork W2054825880 @default.
- W2889462839 hasRelatedWork W2329188190 @default.
- W2889462839 hasRelatedWork W2555999489 @default.
- W2889462839 hasRelatedWork W2889462839 @default.
- W2889462839 hasRelatedWork W2905326222 @default.
- W2889462839 hasRelatedWork W4245918053 @default.
- W2889462839 isParatext "false" @default.
- W2889462839 isRetracted "false" @default.
- W2889462839 magId "2889462839" @default.
- W2889462839 workType "other" @default.