Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889491306> ?p ?o ?g. }
- W2889491306 endingPage "15826" @default.
- W2889491306 startingPage "15815" @default.
- W2889491306 abstract "Heat shock protein 27 (HSP27) protects cells under stress. Here, we demonstrate that HSP27 also promotes cell cycle progression of MRC-5 human lung fibroblast cells. Serum starvation for 24 h induced G1 arrest in these cells, and upon serum refeeding, the cells initiated cell cycle progression accompanied by an increase in HSP27 protein levels. HSP27 levels peaked at 12 h, and transcriptional up-regulation of six G2/M-related genes (CCNA2, CCNB1, CCNB2, CDC25C, CDCA3, and CDK1) peaked at 24–48 h. siRNA-mediated HSP27 silencing in proliferating MRC-5 cells induced G2 arrest coinciding with down-regulation of these six genes. Of note, the promoters of all of these genes have the cell cycle–dependent element and/or the cell cycle gene-homology region. These promoter regions are known to be bound by the E2F family proteins (E2F-1 to E2F-8) and retinoblastoma (RB) family proteins (RB1, p107, and p130), among which E2F-4 and p130 were strongly up-regulated in HSP27-knockdown cells. E2F-4 or p130 knockdown concomitant with the HSP27 knockdown rescued MRC-5 cells from G2 arrest and up-regulated the six cell cycle genes. Moreover, we observed cellular senescence in MRC-5 cells on day 3 after the HSP27 knockdown, as evidenced by increased senescence-associated β-gal activity and up-regulated inflammatory cytokines. The cellular senescence was also suppressed by the concomitant knockdown of E2F-4/HSP27 or p130/HSP27. Our findings indicate that HSP27 promotes cell cycle progression of MRC-5 cells by suppressing expression of the transcriptional repressors E2F-4 and p130. Heat shock protein 27 (HSP27) protects cells under stress. Here, we demonstrate that HSP27 also promotes cell cycle progression of MRC-5 human lung fibroblast cells. Serum starvation for 24 h induced G1 arrest in these cells, and upon serum refeeding, the cells initiated cell cycle progression accompanied by an increase in HSP27 protein levels. HSP27 levels peaked at 12 h, and transcriptional up-regulation of six G2/M-related genes (CCNA2, CCNB1, CCNB2, CDC25C, CDCA3, and CDK1) peaked at 24–48 h. siRNA-mediated HSP27 silencing in proliferating MRC-5 cells induced G2 arrest coinciding with down-regulation of these six genes. Of note, the promoters of all of these genes have the cell cycle–dependent element and/or the cell cycle gene-homology region. These promoter regions are known to be bound by the E2F family proteins (E2F-1 to E2F-8) and retinoblastoma (RB) family proteins (RB1, p107, and p130), among which E2F-4 and p130 were strongly up-regulated in HSP27-knockdown cells. E2F-4 or p130 knockdown concomitant with the HSP27 knockdown rescued MRC-5 cells from G2 arrest and up-regulated the six cell cycle genes. Moreover, we observed cellular senescence in MRC-5 cells on day 3 after the HSP27 knockdown, as evidenced by increased senescence-associated β-gal activity and up-regulated inflammatory cytokines. The cellular senescence was also suppressed by the concomitant knockdown of E2F-4/HSP27 or p130/HSP27. Our findings indicate that HSP27 promotes cell cycle progression of MRC-5 cells by suppressing expression of the transcriptional repressors E2F-4 and p130." @default.
- W2889491306 created "2018-09-07" @default.
- W2889491306 creator A5048417175 @default.
- W2889491306 creator A5073197601 @default.
- W2889491306 creator A5074673340 @default.
- W2889491306 date "2018-10-01" @default.
- W2889491306 modified "2023-09-30" @default.
- W2889491306 title "Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130" @default.
- W2889491306 cites W1162737367 @default.
- W2889491306 cites W1536843121 @default.
- W2889491306 cites W1800944583 @default.
- W2889491306 cites W1858630497 @default.
- W2889491306 cites W1966909976 @default.
- W2889491306 cites W1969830995 @default.
- W2889491306 cites W1970924670 @default.
- W2889491306 cites W1971797131 @default.
- W2889491306 cites W1974208182 @default.
- W2889491306 cites W1977517636 @default.
- W2889491306 cites W1986723919 @default.
- W2889491306 cites W1988050012 @default.
- W2889491306 cites W1993676104 @default.
- W2889491306 cites W1993771588 @default.
- W2889491306 cites W1997143012 @default.
- W2889491306 cites W2001720505 @default.
- W2889491306 cites W2004273407 @default.
- W2889491306 cites W2005202590 @default.
- W2889491306 cites W2014073136 @default.
- W2889491306 cites W2015815609 @default.
- W2889491306 cites W2021505095 @default.
- W2889491306 cites W2033655088 @default.
- W2889491306 cites W2034980302 @default.
- W2889491306 cites W2048975879 @default.
- W2889491306 cites W2049490068 @default.
- W2889491306 cites W2058328743 @default.
- W2889491306 cites W2062796320 @default.
- W2889491306 cites W2067117191 @default.
- W2889491306 cites W2072189442 @default.
- W2889491306 cites W2077450385 @default.
- W2889491306 cites W2082168320 @default.
- W2889491306 cites W2089766373 @default.
- W2889491306 cites W2092333751 @default.
- W2889491306 cites W2094961514 @default.
- W2889491306 cites W2097412562 @default.
- W2889491306 cites W2108887402 @default.
- W2889491306 cites W2119887420 @default.
- W2889491306 cites W2120343162 @default.
- W2889491306 cites W2132224453 @default.
- W2889491306 cites W2143609278 @default.
- W2889491306 cites W2146428402 @default.
- W2889491306 cites W2150748567 @default.
- W2889491306 cites W2154970032 @default.
- W2889491306 cites W2156397151 @default.
- W2889491306 cites W2253311583 @default.
- W2889491306 cites W2256341816 @default.
- W2889491306 cites W2513855625 @default.
- W2889491306 cites W2566859523 @default.
- W2889491306 cites W2583281873 @default.
- W2889491306 cites W2594519469 @default.
- W2889491306 cites W2613397346 @default.
- W2889491306 cites W2620914886 @default.
- W2889491306 doi "https://doi.org/10.1074/jbc.ra118.003310" @default.
- W2889491306 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6187643" @default.
- W2889491306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30166342" @default.
- W2889491306 hasPublicationYear "2018" @default.
- W2889491306 type Work @default.
- W2889491306 sameAs 2889491306 @default.
- W2889491306 citedByCount "10" @default.
- W2889491306 countsByYear W28894913062019 @default.
- W2889491306 countsByYear W28894913062020 @default.
- W2889491306 countsByYear W28894913062021 @default.
- W2889491306 countsByYear W28894913062023 @default.
- W2889491306 crossrefType "journal-article" @default.
- W2889491306 hasAuthorship W2889491306A5048417175 @default.
- W2889491306 hasAuthorship W2889491306A5073197601 @default.
- W2889491306 hasAuthorship W2889491306A5074673340 @default.
- W2889491306 hasBestOaLocation W28894913061 @default.
- W2889491306 hasConcept C104317684 @default.
- W2889491306 hasConcept C120504264 @default.
- W2889491306 hasConcept C1491633281 @default.
- W2889491306 hasConcept C153911025 @default.
- W2889491306 hasConcept C173396325 @default.
- W2889491306 hasConcept C190283241 @default.
- W2889491306 hasConcept C205260736 @default.
- W2889491306 hasConcept C2776062698 @default.
- W2889491306 hasConcept C2779559962 @default.
- W2889491306 hasConcept C29537977 @default.
- W2889491306 hasConcept C54355233 @default.
- W2889491306 hasConcept C68991219 @default.
- W2889491306 hasConcept C83258922 @default.
- W2889491306 hasConcept C86803240 @default.
- W2889491306 hasConcept C95444343 @default.
- W2889491306 hasConceptScore W2889491306C104317684 @default.
- W2889491306 hasConceptScore W2889491306C120504264 @default.
- W2889491306 hasConceptScore W2889491306C1491633281 @default.
- W2889491306 hasConceptScore W2889491306C153911025 @default.
- W2889491306 hasConceptScore W2889491306C173396325 @default.
- W2889491306 hasConceptScore W2889491306C190283241 @default.
- W2889491306 hasConceptScore W2889491306C205260736 @default.