Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889590147> ?p ?o ?g. }
- W2889590147 endingPage "170" @default.
- W2889590147 startingPage "158" @default.
- W2889590147 abstract "We deal with the problem of detecting seagrass presence/absence and distinguishing seagrass families in the Mediterranean via supervised learning methods. By merging datasets about seagrass presence and other external environmental variables, we develop suitable training data, enhanced by seagrass absence data algorithmically produced based on certain hypotheses. Experiments comparing several popular classification algorithms yield up to 93.4% accuracy in detecting seagrass presence. In a feature strength analysis, the most important variables determining presence–absence are found to be Chlorophyll-α levels and Distance-to-Coast. For determining family, variables cannot be easily singled out; several different variables seem to be of importance, with Chlorophyll-α surpassing all others. In both problems, tree-based classification algorithms perform better than others, with Random Forest being the most effective. Hidden preferences reveal that Cymodocea and Posidonia favor the low, limited-range chlorophyll-α levels (<0.5 mg/m3), Halophila tolerates higher salinities (>39), while Ruppia prefers euryhaline conditions (37.5–39)." @default.
- W2889590147 created "2018-09-27" @default.
- W2889590147 creator A5057537846 @default.
- W2889590147 creator A5058891144 @default.
- W2889590147 creator A5085013156 @default.
- W2889590147 date "2018-11-01" @default.
- W2889590147 modified "2023-10-04" @default.
- W2889590147 title "Seagrass detection in the mediterranean: A supervised learning approach" @default.
- W2889590147 cites W1964308527 @default.
- W2889590147 cites W1970149988 @default.
- W2889590147 cites W1971392084 @default.
- W2889590147 cites W1993184115 @default.
- W2889590147 cites W1999210222 @default.
- W2889590147 cites W2002791920 @default.
- W2889590147 cites W2005766022 @default.
- W2889590147 cites W2005780189 @default.
- W2889590147 cites W2005858740 @default.
- W2889590147 cites W2011037238 @default.
- W2889590147 cites W2013265994 @default.
- W2889590147 cites W2013716240 @default.
- W2889590147 cites W2016198865 @default.
- W2889590147 cites W2016353388 @default.
- W2889590147 cites W2041077191 @default.
- W2889590147 cites W2043692084 @default.
- W2889590147 cites W2044989369 @default.
- W2889590147 cites W2048099329 @default.
- W2889590147 cites W2048270893 @default.
- W2889590147 cites W2050046434 @default.
- W2889590147 cites W2058872430 @default.
- W2889590147 cites W2060298585 @default.
- W2889590147 cites W2072909018 @default.
- W2889590147 cites W2087442484 @default.
- W2889590147 cites W2089055951 @default.
- W2889590147 cites W2090105631 @default.
- W2889590147 cites W2097339346 @default.
- W2889590147 cites W2099534828 @default.
- W2889590147 cites W2114225122 @default.
- W2889590147 cites W2120160157 @default.
- W2889590147 cites W2144749488 @default.
- W2889590147 cites W2146121083 @default.
- W2889590147 cites W2159424288 @default.
- W2889590147 cites W2166237369 @default.
- W2889590147 cites W2167453047 @default.
- W2889590147 cites W2177299793 @default.
- W2889590147 cites W248562004 @default.
- W2889590147 cites W2742471985 @default.
- W2889590147 cites W2911964244 @default.
- W2889590147 cites W4234698323 @default.
- W2889590147 doi "https://doi.org/10.1016/j.ecoinf.2018.09.004" @default.
- W2889590147 hasPublicationYear "2018" @default.
- W2889590147 type Work @default.
- W2889590147 sameAs 2889590147 @default.
- W2889590147 citedByCount "26" @default.
- W2889590147 countsByYear W28895901472019 @default.
- W2889590147 countsByYear W28895901472020 @default.
- W2889590147 countsByYear W28895901472021 @default.
- W2889590147 countsByYear W28895901472022 @default.
- W2889590147 countsByYear W28895901472023 @default.
- W2889590147 crossrefType "journal-article" @default.
- W2889590147 hasAuthorship W2889590147A5057537846 @default.
- W2889590147 hasAuthorship W2889590147A5058891144 @default.
- W2889590147 hasAuthorship W2889590147A5085013156 @default.
- W2889590147 hasBestOaLocation W28895901471 @default.
- W2889590147 hasConcept C119857082 @default.
- W2889590147 hasConcept C127413603 @default.
- W2889590147 hasConcept C129513315 @default.
- W2889590147 hasConcept C138885662 @default.
- W2889590147 hasConcept C146978453 @default.
- W2889590147 hasConcept C169258074 @default.
- W2889590147 hasConcept C185933670 @default.
- W2889590147 hasConcept C18903297 @default.
- W2889590147 hasConcept C204323151 @default.
- W2889590147 hasConcept C2776401178 @default.
- W2889590147 hasConcept C2777400808 @default.
- W2889590147 hasConcept C2780687703 @default.
- W2889590147 hasConcept C41008148 @default.
- W2889590147 hasConcept C41895202 @default.
- W2889590147 hasConcept C4646841 @default.
- W2889590147 hasConcept C76854278 @default.
- W2889590147 hasConcept C86803240 @default.
- W2889590147 hasConceptScore W2889590147C119857082 @default.
- W2889590147 hasConceptScore W2889590147C127413603 @default.
- W2889590147 hasConceptScore W2889590147C129513315 @default.
- W2889590147 hasConceptScore W2889590147C138885662 @default.
- W2889590147 hasConceptScore W2889590147C146978453 @default.
- W2889590147 hasConceptScore W2889590147C169258074 @default.
- W2889590147 hasConceptScore W2889590147C185933670 @default.
- W2889590147 hasConceptScore W2889590147C18903297 @default.
- W2889590147 hasConceptScore W2889590147C204323151 @default.
- W2889590147 hasConceptScore W2889590147C2776401178 @default.
- W2889590147 hasConceptScore W2889590147C2777400808 @default.
- W2889590147 hasConceptScore W2889590147C2780687703 @default.
- W2889590147 hasConceptScore W2889590147C41008148 @default.
- W2889590147 hasConceptScore W2889590147C41895202 @default.
- W2889590147 hasConceptScore W2889590147C4646841 @default.
- W2889590147 hasConceptScore W2889590147C76854278 @default.
- W2889590147 hasConceptScore W2889590147C86803240 @default.
- W2889590147 hasLocation W28895901471 @default.