Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889591633> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2889591633 endingPage "2463" @default.
- W2889591633 startingPage "2461" @default.
- W2889591633 abstract "In the current issue of the American Journal of Pathology, Kumar et al1Kumar V. Vashistha H. Lan X. Chandel N. Ayasolla K. Shoshtari S.S. Aslam R. Paliwal N. Abbruscato F. Mikulak J. Popik W. Atta M.G. Chander P.N. Malhotra A. Meyer-Schwesinger C. Skorecki K. Singhal P.C. Role of APOL1 in human parietal epithelial cell transition.Am J Pathol. 2018; 188: 2508-2528Scopus (18) Google Scholar report on novel and surprising new roles for apolipoprotein (APO)-L1. The APOL1 gene arose during the course of primate evolution, and until now its physiologic role has been largely considered to be a component of innate immunity. APOL1 is unique to a few Old-World primates, including gorillas and baboons (the latter has a homologous protein).2Smith E.E. Malik H.S. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.Genome Res. 2009; 19: 850-858Crossref PubMed Scopus (116) Google Scholar Orangutans and macaques possess an APOL1 pseudogene that is not expressed; usually the process of pseudogene formation occurs when a gene is not needed or is actually toxic. Other mammals, such as mice, lack APOL1 altogether. Genetic variants in APOL1 were identified in 2010 as the major driver of linkage between this region of chromosome 22 and kidney disease among African Americans.3Genovese G. Friedman D.J. Ross M.D. Lecordier L. Uzureau P. Freedman B.I. Bowden D.W. Langefeld C.D. Oleksyk T.K. Uscinski Knob A.L. Bernhardy A.J. Hicks P.J. Nelson G.W. Vanhollebeke B. Winkler C.A. Kopp J.B. Pays E. Pollak M.R. Association of trypanolytic ApoL1 variants with kidney disease in African Americans.Science. 2010; 329: 841-845Crossref PubMed Scopus (1402) Google Scholar, 4Tzur S. Rosset S. Shemer R. Yudkovsky G. Selig S. Tarekegn A. Bekele E. Bradman N. Wasser W.G. Behar D.M. Skorecki K. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene.Hum Genet. 2010; 128: 345-350Crossref PubMed Scopus (458) Google Scholar The association of these variants with kidney disease among individuals with sub-Saharan African ancestry is surprisingly strong. The odds ratios for being a carrier of two APOL1 kidney-risk alleles are as follows: HIV-associated nephropathy, 29 in the United States5Kopp J.B. Nelson G.W. Sampath K. Johnson R.C. Genovese G. An P. Friedman D. Briggs W. Dart R. Korbet S. Mokrzycki M.H. Kimmel P.L. Limou S. Ahuja T.S. Berns J.S. Fryc J. Simon E.E. Smith M.C. Trachtman H. Michel D.M. Schelling J.R. Vlahov D. Pollak M. Winkler C.A. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy.J Am Soc Nephrol. 2011; 22: 2129-2137Crossref PubMed Scopus (587) Google Scholar and 89 in South Africa6Kasembeli A.N. Duarte R. Ramsay M. Mosiane P. Dickens C. Dix-Peek T. Limou S. Sezgin E. Nelson G.W. Fogo A.B. Goetsch S. Kopp J.B. Winkler C.A. Naicker S. APOL1 risk variants are strongly associated with HIV-associated nephropathy in black South Africans.J Am Soc Nephrol. 2015; 26: 2882-2890Crossref PubMed Scopus (213) Google Scholar; focal segmental glomerulosclerosis, 17 in the United States5Kopp J.B. Nelson G.W. Sampath K. Johnson R.C. Genovese G. An P. Friedman D. Briggs W. Dart R. Korbet S. Mokrzycki M.H. Kimmel P.L. Limou S. Ahuja T.S. Berns J.S. Fryc J. Simon E.E. Smith M.C. Trachtman H. Michel D.M. Schelling J.R. Vlahov D. Pollak M. Winkler C.A. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy.J Am Soc Nephrol. 2011; 22: 2129-2137Crossref PubMed Scopus (587) Google Scholar; and arterionephrosclerosis, 7 in the United States7Lipkowitz M.S. Freedman B.I. Langefeld C.D. Comeau M.E. Bowden D.W. Kao W.H. Astor B.C. Bottinger E.P. Iyengar S.K. Klotman P.E. Freedman R.G. Zhang W. Parekh R.S. Choi M.J. Nelson G.W. Winkler C.A. Kopp J.B. SK Investigators: Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. 2013; 83: 114-120Google Scholar with additional associations for lupus nephritis, deceased donor transplant and living donor kidney transplant outcomes, and outcomes for living donors themselves. APOL1 is expressed in podocytes, and the variants induce podocyte injury by several cellular and molecular pathways.8Heymann J. Winkler C.A. Hoek M. Susztak K. Kopp J.B. Therapeutics for APOL1 nephropathies: putting out the fire in the podocyte.Nephrol Dial Transplant. 2017; 32: i65-i70Crossref PubMed Scopus (26) Google Scholar miRNAs (miRs) comprise a large set of noncoding RNA species, encoded by at least 585 genes in humans, which are processed to (typically) 22 nucleotides in length. The miR transcripts fold into short hairpin turns, and, via sequence complementarity, bind specific mRNAs. miRs may alter (generally suppressing) mRNA function by various mechanisms, including the induction of mRNA cleavage; shortening of the polyA tail (leading to shortened mRNA half-life); and compromise of translational efficiency on the ribosomes, among other mechanisms. Kietzmann et al9Kietzmann L. Guhr S.S. Meyer T.N. Ni L. Sachs M. Panzer U. Stahl R.A. Saleem M.A. Kerjaschki D. Gebeshuber C.A. Meyer-Schwesinger C. MicroRNA-193a regulates the transdifferentiation of human parietal epithelial cells toward a podocyte phenotype.J Am Soc Nephrol. 2015; 26: 1389-1401Crossref PubMed Scopus (55) Google Scholar previously demonstrated that miR-193a down-regulates transcription of the Wilms tumor 1 gene, resulting in podocyte dedifferentiation in vitro and manifesting as focal segmental glomerulosclerosis in experimental animal models. Stable knockdown of miR-193a in human parietal epithelial cells (PECs) promoted a podocyte phenotype. Furthermore, systemic knockdown of miR-193a in mice promoted podocyte-like features in PECs (expression of synaptopodin and Wilms tumor 1 protein). Conversely, transgenic overexpression of miR-193a in mice led to the suppression of a wide range of maturity markers in podocytes, including Wilms tumor 1 protein, nephrin, podocin, and synaptopodin. These data support the hypothesis that miR-193a might contribute to a loss of podocyte phenotype that is characteristic of collapsing glomerulopathy. In a recent paper, Mishra et al10Mishra A. Ayasolla K. Kumar V. Lan X. Vashistha H. Aslam R. Hussain A. Chowdhary S. Marashi Shoshtari S. Paliwal N. Popik W. Saleem M.A. Malhotra A. Meggs L.G. Skorecki K. Singhal P.C. Modulation of apolipoprotein L1-microRNA-193a axis prevents podocyte dedifferentiation in high-glucose milieu.Am J Physiol Renal Physiol. 2018; 314: F832-F843Crossref PubMed Scopus (18) Google Scholar extended these findings to describe a novel and quite interesting APOL1–miR-193 axis in podocytes in humans. Under high-glucose conditions, podocytes showed increased expression of miR-193a (a particular isoform of miR-193); inhibition of miR-193a reversed podocyte dedifferentiation. The authors showed evidence for an inverse relationship between miR-193a and APOL1. Thus miR-193a suppressed APOL1 translation; on the other hand, silencing of miR-193a enhanced the expression of APOL1 and preserved podocyte phenotype. In an observation with possible therapeutic implications, a vitamin D receptor antagonist down-regulated miR-193a, up-regulated APOL1 expression, and prevented dedifferentiation of cultured podocytes. [As an aside, with regard to another miR-193 family member and another apolipoprotein family member, a peptide derived from APOA1 (which shares minimal homology with APOL1) has been reported to induce miR-193-3p, which was associated with reduced expression of lipoxygenases and insulin-like growth factor-1 receptor, and thereby ameliorated pulmonary hypertension.11Sharma S. Umar S. Potus F. Iorga A. Wong G. Meriwether D. Breuils-Bonnet S. Mai D. Navab K. Ross D. Navab M. Provencher S. Fogelman A.M. Bonnet S. Reddy S.T. Eghbali M. Apolipoprotein A-I mimetic peptide 4F rescues pulmonary hypertension by inducing microRNA-193-3p.Circulation. 2014; 130: 776-785Crossref PubMed Scopus (73) Google Scholar] In the current paper, Kumar et al1Kumar V. Vashistha H. Lan X. Chandel N. Ayasolla K. Shoshtari S.S. Aslam R. Paliwal N. Abbruscato F. Mikulak J. Popik W. Atta M.G. Chander P.N. Malhotra A. Meyer-Schwesinger C. Skorecki K. Singhal P.C. Role of APOL1 in human parietal epithelial cell transition.Am J Pathol. 2018; 188: 2508-2528Scopus (18) Google Scholar studied cell culture systems that model the transition in the parietal epithelium, as PECs migrate toward the glomerular vascular pole and acquire a podocyte phenotype. This model was developed by several groups, including those of Shankland et al,12Shankland S.J. Freedman B.S. Pippin J.W. Can podocytes be regenerated in adults?.Curr Opin Nephrol Hypertens. 2017; 26: 154-164Crossref PubMed Scopus (40) Google Scholar who identified podocyte precursors from renin-expressing precursors and Romagnani and colleagues,13Lasagni L. Angelotti M.L. Ronconi E. Lombardi D. Nardi S. Peired A. Becherucci F. Mazzinghi B. Sisti A. Romoli S. Burger A. Schaefer B. Buccoliero A. Lazzeri E. Romagnani P. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced.Stem Cell Reports. 2015; 5: 248-263Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar who described renal progenitor cells along the Bowman capsule. In the current study,1Kumar V. Vashistha H. Lan X. Chandel N. Ayasolla K. Shoshtari S.S. Aslam R. Paliwal N. Abbruscato F. Mikulak J. Popik W. Atta M.G. Chander P.N. Malhotra A. Meyer-Schwesinger C. Skorecki K. Singhal P.C. Role of APOL1 in human parietal epithelial cell transition.Am J Pathol. 2018; 188: 2508-2528Scopus (18) Google Scholar using a culture system, as PECs differentiated into podocytes, APOL1 expression commenced on day 4, accompanied by a decrease in miR-193a expression. Down-regulation of APOL1 via siRNA increased miR-193a, which the authors interpreted as optimizing the PEC phenotype. Similarly, suppression of miR-193a enhanced APOL1 expression. The authors conclude that the absence of APOL1 promotes PEC phenotype and that the expression of APOL1 in PECs contributes to their differentiation into podocytes. These findings are remarkable. As noted in the first paragraph, the APOL1 gene is unique to certain primates; these primates include humans and gorillas (and in a modified form in baboons) but not chimpanzees, our nearest relative. Thus, as APOL1 has arisen during the course of primate evolution, it appears that the APOL1–miR-193a axis has also arisen during the same time period. The APOL1 gene appeared sometime after the divergence of Old World primates and New World primates, approximately 33 million years ago.2Smith E.E. Malik H.S. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.Genome Res. 2009; 19: 850-858Crossref PubMed Scopus (116) Google Scholar With this background, it is not at all clear, from an evolutionary perspective, why human podocytes are reliant on this axis to maintain a differentiated state. If this hypothesis is correct, we need to understand why one individual, null for APOL1, still has normal kidney function.14Johnstone D.B. Shegokar V. Nihalani D. Rathore Y.S. Mallik L. Ashish Zare V. Ikizler H.O. Powar R. Holzman L.B. APOL1 null alleles from a rural village in India do not correlate with glomerulosclerosis.PLoS One. 2012; 7: e51546Crossref PubMed Scopus (60) Google Scholar Future work should address whether this APOL1–miR-193a axis functions in a similar way in vivo as it does in vitro, in relevant transgenic mouse models and in human kidneys. Vitamin D has been proposed to play a trophic role in podocyte physiology.15Li Y.C. Podocytes as target of vitamin D.Curr Diabetes Rev. 2011; 7: 35-40Crossref PubMed Scopus (40) Google Scholar It is quite interesting that a vitamin D receptor antagonist was found to suppress the APOL1–miR-193a expression, in light of its proposed inverse relationship with APOL1 and consequential effects on podocyte phenotype. This may be exploited for therapeutic purposes, with the limitation of possible toxicity from vitamin D deficiency. We thank Dr. Ben Afzali for the helpful comments. Download .xml (.0 MB) Help with xml files Data Profile Role of Apolipoprotein L1 in Human Parietal Epithelial Cell TransitionThe American Journal of PathologyVol. 188Issue 11PreviewHuman parietal epithelial cells (PECs) are progenitor cells that sustain podocyte homeostasis. We hypothesized that the lack of apolipoprotein (APO) L1 ensures the PEC phenotype, but its induction initiates PEC transition (expression of podocyte markers). APOL1 expression and down-regulation of miR193a coincided with the expression of podocyte markers during the transition. The induction of APOL1 also stimulated transition markers in human embryonic kidney cells (cells with undetectable APOL1 protein expression). Full-Text PDF Open Archive" @default.
- W2889591633 created "2018-09-27" @default.
- W2889591633 creator A5041721199 @default.
- W2889591633 creator A5044494633 @default.
- W2889591633 date "2018-11-01" @default.
- W2889591633 modified "2023-10-18" @default.
- W2889591633 title "APOL1–miR-193 Axis as a Bifunctional Regulator of the Glomerular Parietal Epithelium" @default.
- W2889591633 cites W1677887083 @default.
- W2889591633 cites W2030803259 @default.
- W2889591633 cites W2042134721 @default.
- W2889591633 cites W2062094214 @default.
- W2889591633 cites W2110595758 @default.
- W2889591633 cites W2124641083 @default.
- W2889591633 cites W2124693282 @default.
- W2889591633 cites W2137096226 @default.
- W2889591633 cites W2142295376 @default.
- W2889591633 cites W2147789234 @default.
- W2889591633 cites W2159281103 @default.
- W2889591633 cites W2595006106 @default.
- W2889591633 cites W2779801521 @default.
- W2889591633 cites W2783543217 @default.
- W2889591633 cites W2889882659 @default.
- W2889591633 doi "https://doi.org/10.1016/j.ajpath.2018.08.002" @default.
- W2889591633 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6207100" @default.
- W2889591633 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30201493" @default.
- W2889591633 hasPublicationYear "2018" @default.
- W2889591633 type Work @default.
- W2889591633 sameAs 2889591633 @default.
- W2889591633 citedByCount "3" @default.
- W2889591633 countsByYear W28895916332021 @default.
- W2889591633 countsByYear W28895916332022 @default.
- W2889591633 countsByYear W28895916332023 @default.
- W2889591633 crossrefType "journal-article" @default.
- W2889591633 hasAuthorship W2889591633A5041721199 @default.
- W2889591633 hasAuthorship W2889591633A5044494633 @default.
- W2889591633 hasBestOaLocation W28895916331 @default.
- W2889591633 hasConcept C104317684 @default.
- W2889591633 hasConcept C105702510 @default.
- W2889591633 hasConcept C134018914 @default.
- W2889591633 hasConcept C142724271 @default.
- W2889591633 hasConcept C2780091579 @default.
- W2889591633 hasConcept C2780368995 @default.
- W2889591633 hasConcept C2909587778 @default.
- W2889591633 hasConcept C2910856063 @default.
- W2889591633 hasConcept C529295009 @default.
- W2889591633 hasConcept C54355233 @default.
- W2889591633 hasConcept C6929976 @default.
- W2889591633 hasConcept C71924100 @default.
- W2889591633 hasConcept C86803240 @default.
- W2889591633 hasConcept C95444343 @default.
- W2889591633 hasConceptScore W2889591633C104317684 @default.
- W2889591633 hasConceptScore W2889591633C105702510 @default.
- W2889591633 hasConceptScore W2889591633C134018914 @default.
- W2889591633 hasConceptScore W2889591633C142724271 @default.
- W2889591633 hasConceptScore W2889591633C2780091579 @default.
- W2889591633 hasConceptScore W2889591633C2780368995 @default.
- W2889591633 hasConceptScore W2889591633C2909587778 @default.
- W2889591633 hasConceptScore W2889591633C2910856063 @default.
- W2889591633 hasConceptScore W2889591633C529295009 @default.
- W2889591633 hasConceptScore W2889591633C54355233 @default.
- W2889591633 hasConceptScore W2889591633C6929976 @default.
- W2889591633 hasConceptScore W2889591633C71924100 @default.
- W2889591633 hasConceptScore W2889591633C86803240 @default.
- W2889591633 hasConceptScore W2889591633C95444343 @default.
- W2889591633 hasFunder F4320332161 @default.
- W2889591633 hasFunder F4320337357 @default.
- W2889591633 hasIssue "11" @default.
- W2889591633 hasLocation W28895916331 @default.
- W2889591633 hasLocation W28895916332 @default.
- W2889591633 hasLocation W28895916333 @default.
- W2889591633 hasLocation W28895916334 @default.
- W2889591633 hasOpenAccess W2889591633 @default.
- W2889591633 hasPrimaryLocation W28895916331 @default.
- W2889591633 hasRelatedWork W1972412403 @default.
- W2889591633 hasRelatedWork W2002636911 @default.
- W2889591633 hasRelatedWork W2010430461 @default.
- W2889591633 hasRelatedWork W2014919998 @default.
- W2889591633 hasRelatedWork W2017357304 @default.
- W2889591633 hasRelatedWork W2070818800 @default.
- W2889591633 hasRelatedWork W2138157839 @default.
- W2889591633 hasRelatedWork W2172850138 @default.
- W2889591633 hasRelatedWork W2416815615 @default.
- W2889591633 hasRelatedWork W2790039558 @default.
- W2889591633 hasVolume "188" @default.
- W2889591633 isParatext "false" @default.
- W2889591633 isRetracted "false" @default.
- W2889591633 magId "2889591633" @default.
- W2889591633 workType "article" @default.