Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889628462> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2889628462 abstract "Let $S={x_1,x_2,ldots,x_n}$ be a finite set of distinct positive integers. Throughout this article we assume that the set $S$ is GCD closed. The LCM matrix $[S]$ of the set $S$ is defined to be the $ntimes n$ matrix with $mathrm{lcm}(x_i,x_j)$ as its $ij$ element. The famous Bourque-Ligh conjecture used to state that the LCM matrix of a GCD closed set $S$ is always invertible, but currently it is a well-known fact that any nontrivial LCM matrix is indefinite and under the right circumstances it can be even singular (even if the set $S$ is assumed to be GCD closed). However, not much more is known about the inertia of LCM matrices in general. The ultimate goal of this article is to improve this situation. Assuming that $S$ is a meet closed set we define an entirely new lattice-theoretic concept by saying that an element $x_iin S$ generates a double-chain set in $S$ if the set $mathrm{meetcl}(C_S(x_i))setminus C_S(x_i)$ can be expressed as a union of two disjoint chains (here the set $C_S(x_i)$ consists of all the elements of the set $S$ that are covered by $x_i$ and $mathrm{meetcl}(C_S(x_i))$ is the smallest meet closed subset of $S$ that contains the set $C_S(x_i)$). We then proceed by studying the values of the Mobius function on sets in which every element generates a double-chain set and use the properties of the Mobius function to explain why the Bourque-Ligh conjecture holds in so many cases and fails in certain very specific instances. After that we turn our attention to the inertia and see that in some cases it is possible to determine the inertia of an LCM matrix simply by looking at the lattice-theoretic structure of $(S,|)$ alone. Finally, we are going to show how to construct LCM matrices in which the majority of the eigenvalues is either negative or positive." @default.
- W2889628462 created "2018-09-27" @default.
- W2889628462 creator A5020763154 @default.
- W2889628462 creator A5049044996 @default.
- W2889628462 creator A5074979876 @default.
- W2889628462 date "2018-09-07" @default.
- W2889628462 modified "2023-09-27" @default.
- W2889628462 title "Studying the inertias of LCM matrices and revisiting the Bourque-Ligh conjecture" @default.
- W2889628462 cites W1969921015 @default.
- W2889628462 cites W1974058718 @default.
- W2889628462 cites W1988296981 @default.
- W2889628462 cites W1995734876 @default.
- W2889628462 cites W2034298439 @default.
- W2889628462 cites W2039655969 @default.
- W2889628462 cites W2044636635 @default.
- W2889628462 cites W2060462502 @default.
- W2889628462 cites W2062171640 @default.
- W2889628462 cites W2068748791 @default.
- W2889628462 cites W2158184531 @default.
- W2889628462 cites W2557577691 @default.
- W2889628462 cites W2610857016 @default.
- W2889628462 cites W2615185494 @default.
- W2889628462 cites W2962726658 @default.
- W2889628462 cites W2962931955 @default.
- W2889628462 hasPublicationYear "2018" @default.
- W2889628462 type Work @default.
- W2889628462 sameAs 2889628462 @default.
- W2889628462 citedByCount "0" @default.
- W2889628462 crossrefType "posted-content" @default.
- W2889628462 hasAuthorship W2889628462A5020763154 @default.
- W2889628462 hasAuthorship W2889628462A5049044996 @default.
- W2889628462 hasAuthorship W2889628462A5074979876 @default.
- W2889628462 hasConcept C106487976 @default.
- W2889628462 hasConcept C114614502 @default.
- W2889628462 hasConcept C118615104 @default.
- W2889628462 hasConcept C14036430 @default.
- W2889628462 hasConcept C159985019 @default.
- W2889628462 hasConcept C164953516 @default.
- W2889628462 hasConcept C177264268 @default.
- W2889628462 hasConcept C17744445 @default.
- W2889628462 hasConcept C192562407 @default.
- W2889628462 hasConcept C199360897 @default.
- W2889628462 hasConcept C199539241 @default.
- W2889628462 hasConcept C200288055 @default.
- W2889628462 hasConcept C202444582 @default.
- W2889628462 hasConcept C2780990831 @default.
- W2889628462 hasConcept C33923547 @default.
- W2889628462 hasConcept C41008148 @default.
- W2889628462 hasConcept C45340560 @default.
- W2889628462 hasConcept C78458016 @default.
- W2889628462 hasConcept C86803240 @default.
- W2889628462 hasConcept C96442724 @default.
- W2889628462 hasConceptScore W2889628462C106487976 @default.
- W2889628462 hasConceptScore W2889628462C114614502 @default.
- W2889628462 hasConceptScore W2889628462C118615104 @default.
- W2889628462 hasConceptScore W2889628462C14036430 @default.
- W2889628462 hasConceptScore W2889628462C159985019 @default.
- W2889628462 hasConceptScore W2889628462C164953516 @default.
- W2889628462 hasConceptScore W2889628462C177264268 @default.
- W2889628462 hasConceptScore W2889628462C17744445 @default.
- W2889628462 hasConceptScore W2889628462C192562407 @default.
- W2889628462 hasConceptScore W2889628462C199360897 @default.
- W2889628462 hasConceptScore W2889628462C199539241 @default.
- W2889628462 hasConceptScore W2889628462C200288055 @default.
- W2889628462 hasConceptScore W2889628462C202444582 @default.
- W2889628462 hasConceptScore W2889628462C2780990831 @default.
- W2889628462 hasConceptScore W2889628462C33923547 @default.
- W2889628462 hasConceptScore W2889628462C41008148 @default.
- W2889628462 hasConceptScore W2889628462C45340560 @default.
- W2889628462 hasConceptScore W2889628462C78458016 @default.
- W2889628462 hasConceptScore W2889628462C86803240 @default.
- W2889628462 hasConceptScore W2889628462C96442724 @default.
- W2889628462 hasLocation W28896284621 @default.
- W2889628462 hasOpenAccess W2889628462 @default.
- W2889628462 hasPrimaryLocation W28896284621 @default.
- W2889628462 hasRelatedWork W1515320669 @default.
- W2889628462 hasRelatedWork W1519272146 @default.
- W2889628462 hasRelatedWork W1661899000 @default.
- W2889628462 hasRelatedWork W1998905070 @default.
- W2889628462 hasRelatedWork W1999102455 @default.
- W2889628462 hasRelatedWork W2045746486 @default.
- W2889628462 hasRelatedWork W2057527818 @default.
- W2889628462 hasRelatedWork W2078824781 @default.
- W2889628462 hasRelatedWork W2081572779 @default.
- W2889628462 hasRelatedWork W2220794801 @default.
- W2889628462 hasRelatedWork W2290932530 @default.
- W2889628462 hasRelatedWork W2306129715 @default.
- W2889628462 hasRelatedWork W2742044928 @default.
- W2889628462 hasRelatedWork W2767113808 @default.
- W2889628462 hasRelatedWork W2911922132 @default.
- W2889628462 hasRelatedWork W2945786240 @default.
- W2889628462 hasRelatedWork W2980443616 @default.
- W2889628462 hasRelatedWork W3044071473 @default.
- W2889628462 hasRelatedWork W3165382499 @default.
- W2889628462 hasRelatedWork W3198948812 @default.
- W2889628462 isParatext "false" @default.
- W2889628462 isRetracted "false" @default.
- W2889628462 magId "2889628462" @default.
- W2889628462 workType "article" @default.