Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889649225> ?p ?o ?g. }
- W2889649225 endingPage "1538" @default.
- W2889649225 startingPage "1538" @default.
- W2889649225 abstract "Rolling bearings are important components of rotating machines. For their preventive maintenance, it is not enough to know whether there is any fault or the fault type. For an effective maintenance, a fault severity monitoring needs to be conducted. Currently, the bearing fault diagnosis method based on time–frequency image (TFI) recognition is attracting increasing attention. This paper contributes to the ongoing investigation by proposing a new approach for the fault severity monitoring of rolling bearings based on the texture feature extraction of sparse TFIs. The first and main step is to obtain accurate TFIs from the vibration signals of rolling bearings. Traditional time–frequency analysis methods have disadvantages such as low resolution and cross-term interference. Therefore, the TFIs obtained cannot satisfactorily express the time–frequency characteristics of bearing vibration signals. To solve this problem, a sparse time–frequency analysis method based on the first-order primal-dual algorithm (STFA-PD) was developed in this paper. Unlike traditional time–frequency analysis methods, the time–frequency analysis model of the STFA-PD method is based on the theory of sparse representation, and is solved using the first-order primal-dual algorithm. For employing the sparse constraint in the frequency domain, the STFA-PD obtains a higher time–frequency resolution and is free from cross-term interference, as the model is based on a linear time–frequency analysis method. The gray level co-occurrence matrix is then employed to extract texture features from the sparse TFIs as input features for classifiers. Vibration signals of rolling bearings with different fault severity degrees are used to validate the proposed approach. The experimental results show that the developed STFA-PD outperforms traditional time–frequency analysis methods in terms of the accuracy and effectiveness for the fault severity monitoring of rolling bearings." @default.
- W2889649225 created "2018-09-27" @default.
- W2889649225 creator A5038462057 @default.
- W2889649225 creator A5055995983 @default.
- W2889649225 creator A5059554801 @default.
- W2889649225 creator A5070127391 @default.
- W2889649225 creator A5074513334 @default.
- W2889649225 date "2018-09-03" @default.
- W2889649225 modified "2023-10-01" @default.
- W2889649225 title "Fault Severity Monitoring of Rolling Bearings Based on Texture Feature Extraction of Sparse Time–Frequency Images" @default.
- W2889649225 cites W1694307164 @default.
- W2889649225 cites W1964511482 @default.
- W2889649225 cites W1964671517 @default.
- W2889649225 cites W1985002319 @default.
- W2889649225 cites W1985437849 @default.
- W2889649225 cites W1986754283 @default.
- W2889649225 cites W1994191509 @default.
- W2889649225 cites W1995278398 @default.
- W2889649225 cites W2005650926 @default.
- W2889649225 cites W2016184716 @default.
- W2889649225 cites W2020375124 @default.
- W2889649225 cites W2031423206 @default.
- W2889649225 cites W2044357053 @default.
- W2889649225 cites W2044465660 @default.
- W2889649225 cites W2047851212 @default.
- W2889649225 cites W2048508162 @default.
- W2889649225 cites W2048868027 @default.
- W2889649225 cites W2049810669 @default.
- W2889649225 cites W2062390125 @default.
- W2889649225 cites W2062968811 @default.
- W2889649225 cites W2073578547 @default.
- W2889649225 cites W2075847476 @default.
- W2889649225 cites W2078204800 @default.
- W2889649225 cites W2081305848 @default.
- W2889649225 cites W2088445469 @default.
- W2889649225 cites W2092663520 @default.
- W2889649225 cites W2100921845 @default.
- W2889649225 cites W2104588962 @default.
- W2889649225 cites W2120287894 @default.
- W2889649225 cites W2143399072 @default.
- W2889649225 cites W2145487065 @default.
- W2889649225 cites W2151693816 @default.
- W2889649225 cites W2165878107 @default.
- W2889649225 cites W2230524333 @default.
- W2889649225 cites W2268758527 @default.
- W2889649225 cites W243674440 @default.
- W2889649225 cites W2475517356 @default.
- W2889649225 cites W2497299144 @default.
- W2889649225 cites W2547672708 @default.
- W2889649225 cites W2582889599 @default.
- W2889649225 cites W2620955063 @default.
- W2889649225 cites W2692693673 @default.
- W2889649225 cites W2748511798 @default.
- W2889649225 cites W2786347331 @default.
- W2889649225 cites W2797016435 @default.
- W2889649225 cites W2799978484 @default.
- W2889649225 cites W2806029326 @default.
- W2889649225 cites W3100362236 @default.
- W2889649225 cites W4255443310 @default.
- W2889649225 doi "https://doi.org/10.3390/app8091538" @default.
- W2889649225 hasPublicationYear "2018" @default.
- W2889649225 type Work @default.
- W2889649225 sameAs 2889649225 @default.
- W2889649225 citedByCount "18" @default.
- W2889649225 countsByYear W28896492252018 @default.
- W2889649225 countsByYear W28896492252019 @default.
- W2889649225 countsByYear W28896492252020 @default.
- W2889649225 countsByYear W28896492252021 @default.
- W2889649225 countsByYear W28896492252022 @default.
- W2889649225 countsByYear W28896492252023 @default.
- W2889649225 crossrefType "journal-article" @default.
- W2889649225 hasAuthorship W2889649225A5038462057 @default.
- W2889649225 hasAuthorship W2889649225A5055995983 @default.
- W2889649225 hasAuthorship W2889649225A5059554801 @default.
- W2889649225 hasAuthorship W2889649225A5070127391 @default.
- W2889649225 hasAuthorship W2889649225A5074513334 @default.
- W2889649225 hasBestOaLocation W28896492251 @default.
- W2889649225 hasConcept C103824480 @default.
- W2889649225 hasConcept C106131492 @default.
- W2889649225 hasConcept C121332964 @default.
- W2889649225 hasConcept C124066611 @default.
- W2889649225 hasConcept C127313418 @default.
- W2889649225 hasConcept C138885662 @default.
- W2889649225 hasConcept C142433447 @default.
- W2889649225 hasConcept C153180895 @default.
- W2889649225 hasConcept C154945302 @default.
- W2889649225 hasConcept C165205528 @default.
- W2889649225 hasConcept C175551986 @default.
- W2889649225 hasConcept C19118579 @default.
- W2889649225 hasConcept C198394728 @default.
- W2889649225 hasConcept C199978012 @default.
- W2889649225 hasConcept C24890656 @default.
- W2889649225 hasConcept C2775924081 @default.
- W2889649225 hasConcept C2776401178 @default.
- W2889649225 hasConcept C31972630 @default.
- W2889649225 hasConcept C41008148 @default.
- W2889649225 hasConcept C41895202 @default.
- W2889649225 hasConcept C47446073 @default.