Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889664047> ?p ?o ?g. }
- W2889664047 abstract "The subtropical oceans are home to the largest phytoplankton biome on the planet. Yet, little is known about potential impacts of ocean acidification (OA) on phytoplankton community composition in the vast oligotrophic ecosystems of the subtropical gyres. To address this question, we conducted an experiment with 9 in situ mesocosms (~35 m3) off the coast of Gran Canaria in the eastern subtropical North Atlantic over a period of 9 weeks. By establishing a gradient of pCO2 ranging from ~350 to 1025 µatm, we simulated carbonate chemistry conditions as projected until the end of the 21st century. Furthermore, we injected nutrient-rich deep water into the mesocosms halfway through the experiment to simulate a natural upwelling event, which regularly leads to patchy nutrient fertilization in the study region. The temporal developments of major taxonomic groups of phytoplankton were analyzed by flow cytometry, pigment composition and microscopy. We observed distinct shifts in phytoplankton community structure in response to high CO2, with markedly different patterns depending on nutrient status of the system. Phytoplankton biomass during the oligotrophic phase was dominated by picocyanobacteria (Synechococcus), which constituted 60-80% of biomass and displayed significantly higher cell abundances at elevated pCO2. The addition of deep water triggered a substantial bloom of large, chain-forming diatoms (mainly Guinardia striata and Leptocylindrus danicus) that dominated the phytoplankton community during the bloom phase (70-80% of biomass) and until the end of the experiment. A CO2 effect on bulk diatom biomass became apparent only in the highest CO2 treatments (>800 µatm), displaying elevated concentrations especially in the stationary phase after nutrient depletion. Notably, these responses were tightly linked to distinct interspecific shifts within the diatom assemblage, particularly favoring the largest species Guinardia striata. Other taxonomic groups contributed less to total phytoplankton biomass, but also displayed distinct responses to OA treatments. For instance, higher CO2 favored the occurrence of prymnesiophyceae (Phaeocystis globosa) and dictyochophyceae, whereas dinoflagellates were negatively affected by increasing CO2. Altogether, our findings revealed considerable shifts in species composition in response to elevated CO2 and indicated that phytoplankton communities in the subtropical oligotrophic oceans might be profoundly altered by ocean acidification." @default.
- W2889664047 created "2018-09-27" @default.
- W2889664047 creator A5005675240 @default.
- W2889664047 creator A5007343280 @default.
- W2889664047 creator A5007731174 @default.
- W2889664047 creator A5033213328 @default.
- W2889664047 creator A5044360827 @default.
- W2889664047 creator A5068215732 @default.
- W2889664047 creator A5081140560 @default.
- W2889664047 creator A5091003508 @default.
- W2889664047 date "2018-09-20" @default.
- W2889664047 modified "2023-09-28" @default.
- W2889664047 title "Response of Subtropical Phytoplankton Communities to Ocean Acidification Under Oligotrophic Conditions and During Nutrient Fertilization" @default.
- W2889664047 cites W1590598713 @default.
- W2889664047 cites W1608826479 @default.
- W2889664047 cites W1615699600 @default.
- W2889664047 cites W172204814 @default.
- W2889664047 cites W1751619112 @default.
- W2889664047 cites W1848845400 @default.
- W2889664047 cites W1852525778 @default.
- W2889664047 cites W1903353036 @default.
- W2889664047 cites W1970440980 @default.
- W2889664047 cites W1970909802 @default.
- W2889664047 cites W1978886837 @default.
- W2889664047 cites W1993079983 @default.
- W2889664047 cites W1998541487 @default.
- W2889664047 cites W2000148293 @default.
- W2889664047 cites W2039643762 @default.
- W2889664047 cites W2060012482 @default.
- W2889664047 cites W2061989939 @default.
- W2889664047 cites W2075435443 @default.
- W2889664047 cites W2079493774 @default.
- W2889664047 cites W2079905572 @default.
- W2889664047 cites W2093463708 @default.
- W2889664047 cites W2093589900 @default.
- W2889664047 cites W2099132234 @default.
- W2889664047 cites W2099189943 @default.
- W2889664047 cites W2100068233 @default.
- W2889664047 cites W2105939570 @default.
- W2889664047 cites W2110846751 @default.
- W2889664047 cites W2114021487 @default.
- W2889664047 cites W2115615253 @default.
- W2889664047 cites W2120654285 @default.
- W2889664047 cites W2129450594 @default.
- W2889664047 cites W2141707502 @default.
- W2889664047 cites W2143182887 @default.
- W2889664047 cites W2156770629 @default.
- W2889664047 cites W2159570945 @default.
- W2889664047 cites W2159878761 @default.
- W2889664047 cites W2161241075 @default.
- W2889664047 cites W2161276074 @default.
- W2889664047 cites W2216244657 @default.
- W2889664047 cites W2218253000 @default.
- W2889664047 cites W2221482649 @default.
- W2889664047 cites W2317013069 @default.
- W2889664047 cites W2317578989 @default.
- W2889664047 cites W2395458369 @default.
- W2889664047 cites W2412361037 @default.
- W2889664047 cites W2518514746 @default.
- W2889664047 cites W2570241764 @default.
- W2889664047 cites W2596084667 @default.
- W2889664047 cites W2605046784 @default.
- W2889664047 cites W2606247199 @default.
- W2889664047 cites W2772715574 @default.
- W2889664047 cites W2790035229 @default.
- W2889664047 cites W2793052640 @default.
- W2889664047 cites W2801020278 @default.
- W2889664047 cites W2805059200 @default.
- W2889664047 cites W2805519875 @default.
- W2889664047 cites W4239085499 @default.
- W2889664047 cites W642637748 @default.
- W2889664047 doi "https://doi.org/10.3389/fmars.2018.00330" @default.
- W2889664047 hasPublicationYear "2018" @default.
- W2889664047 type Work @default.
- W2889664047 sameAs 2889664047 @default.
- W2889664047 citedByCount "19" @default.
- W2889664047 countsByYear W28896640472019 @default.
- W2889664047 countsByYear W28896640472020 @default.
- W2889664047 countsByYear W28896640472021 @default.
- W2889664047 countsByYear W28896640472022 @default.
- W2889664047 countsByYear W28896640472023 @default.
- W2889664047 crossrefType "journal-article" @default.
- W2889664047 hasAuthorship W2889664047A5005675240 @default.
- W2889664047 hasAuthorship W2889664047A5007343280 @default.
- W2889664047 hasAuthorship W2889664047A5007731174 @default.
- W2889664047 hasAuthorship W2889664047A5033213328 @default.
- W2889664047 hasAuthorship W2889664047A5044360827 @default.
- W2889664047 hasAuthorship W2889664047A5068215732 @default.
- W2889664047 hasAuthorship W2889664047A5081140560 @default.
- W2889664047 hasAuthorship W2889664047A5091003508 @default.
- W2889664047 hasBestOaLocation W28896640471 @default.
- W2889664047 hasConcept C108469399 @default.
- W2889664047 hasConcept C110872660 @default.
- W2889664047 hasConcept C111368507 @default.
- W2889664047 hasConcept C115540264 @default.
- W2889664047 hasConcept C127313418 @default.
- W2889664047 hasConcept C14168384 @default.
- W2889664047 hasConcept C142796444 @default.
- W2889664047 hasConcept C149348798 @default.
- W2889664047 hasConcept C155567681 @default.