Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889699275> ?p ?o ?g. }
- W2889699275 endingPage "526" @default.
- W2889699275 startingPage "526" @default.
- W2889699275 abstract "The ultramafic-hosted Kairei vent field is located at 25°19′ S, 70°02′ E, towards the Northern end of segment 1 of the Central Indian Ridge (CIR-S1) at a water depth of ~2450 m. This study aims to investigate the distribution of trace elements among sulfide minerals of differing textures and to examine the possible factors controlling the trace element distribution in those minerals using LA-ICP-MS spot and line scan analyses. Our results show that there are distinct systematic differences in trace element distributions throughout the different minerals, as follows: (1) pyrite is divided into three types at Kairei, including early-stage euhedral pyrite (py-I), sub-euhedral pyrite (py-II), and colloform pyrite (py-III). Pyrite is generally enriched with Mo, Au, As, Tl, Mn, and U. Pyrite-I has high contents of Se, Te, Bi, and Ni when compared to the other types; py-II is enriched in Au relative to py-I and py-III, but poor in Ni; py-III is enriched in Mo, Pb, and U but is poor in Se, Te, Bi, and Au relative to py-I and py-II. Variations in the concentrations of Se, Te, and Bi in pyrite are most likely governed by the strong temperature gradient. There is generally a lower concentration of nickel than Co in pyrite, indicating that our samples precipitated at high temperatures, whereas the extreme Co enrichment is likely from a magmatic heat source combined with an influence of serpentinization reactions. (2) Chalcopyrite is characterized by high concentrations of Co, Se, and Te. The abundance of Se and Te in chalcopyrite over the other minerals is interpreted to have been caused by the high solubilities of Se and Te in the chalcopyrite lattice at high temperatures. The concentrations of Sb, As, and Au are relatively low in chalcopyrite from the Kairei vent field. (3) Sphalerite from Zn-rich chimneys is characterized by high concentrations of Sn, Co, Ga, Ge, Ag, Pb, Sb, As, and Cd, but is depleted in Se, Te, Bi, Mo, Au, Ni, Tl, Mn, Ba, V, and U in comparison with the other minerals. The high concentrations of Cd and Co are likely caused by the substitution of Cd2+ and Co2+ for Zn2+ in sphalerite. A high concentration of Pb accompanied by a high Ag concentration in sphalerite indicates that Ag occurs as Pb–Ag sulfosalts. Gold is generally low in sphalerite and strongly correlates with Pb, suggesting its presence in microinclusions of galena. The strong correlation of As with Ge in sphalerite from Kairei suggests that they might precipitate at medium temperatures and under moderately reduced conditions. (4) Bornite–digenite has very low concentrations of most trace elements, except for Co, Se, and Bi. Serpentinization in ultramafic-hosted hydrothermal systems might play an important role in Au enrichment in pyrite with low As contents. Compared to felsic-hosted seafloor massive sulfide deposits, sulfide minerals from ultramafic-hosted deposits show higher concentrations of Se and Te, but lower As, Sb, and Au concentrations, the latter often attributed to the contribution of magmatic volatiles. As with typical ultramafic-hosted seafloor massive sulfide deposits, Se enrichment in chalcopyrite from Kairei indicates that the primary factor that controls the Se enrichment is temperature-controlled mobility in vent fluids." @default.
- W2889699275 created "2018-09-27" @default.
- W2889699275 creator A5003987315 @default.
- W2889699275 creator A5006511636 @default.
- W2889699275 creator A5039370924 @default.
- W2889699275 creator A5043716768 @default.
- W2889699275 creator A5064400876 @default.
- W2889699275 creator A5079040033 @default.
- W2889699275 creator A5091555779 @default.
- W2889699275 date "2018-11-11" @default.
- W2889699275 modified "2023-10-18" @default.
- W2889699275 title "Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge" @default.
- W2889699275 cites W1434692241 @default.
- W2889699275 cites W1489938111 @default.
- W2889699275 cites W1527575912 @default.
- W2889699275 cites W1534749586 @default.
- W2889699275 cites W1563105721 @default.
- W2889699275 cites W1579624063 @default.
- W2889699275 cites W1665726872 @default.
- W2889699275 cites W1772666815 @default.
- W2889699275 cites W1846057075 @default.
- W2889699275 cites W1963490192 @default.
- W2889699275 cites W1966750556 @default.
- W2889699275 cites W1967588347 @default.
- W2889699275 cites W1969725957 @default.
- W2889699275 cites W1971710814 @default.
- W2889699275 cites W1976984795 @default.
- W2889699275 cites W1981944538 @default.
- W2889699275 cites W1984571476 @default.
- W2889699275 cites W1985473247 @default.
- W2889699275 cites W1988842153 @default.
- W2889699275 cites W1998048740 @default.
- W2889699275 cites W2017264474 @default.
- W2889699275 cites W2019017051 @default.
- W2889699275 cites W2019628966 @default.
- W2889699275 cites W2026986830 @default.
- W2889699275 cites W2029869957 @default.
- W2889699275 cites W2039066042 @default.
- W2889699275 cites W2043710603 @default.
- W2889699275 cites W2052123038 @default.
- W2889699275 cites W2057204941 @default.
- W2889699275 cites W2060363575 @default.
- W2889699275 cites W2064728256 @default.
- W2889699275 cites W2070577207 @default.
- W2889699275 cites W2074699188 @default.
- W2889699275 cites W2075017279 @default.
- W2889699275 cites W2087075409 @default.
- W2889699275 cites W2090562875 @default.
- W2889699275 cites W2091027805 @default.
- W2889699275 cites W2100718067 @default.
- W2889699275 cites W2116125238 @default.
- W2889699275 cites W2116294299 @default.
- W2889699275 cites W2126895442 @default.
- W2889699275 cites W2143864060 @default.
- W2889699275 cites W2152201494 @default.
- W2889699275 cites W2154499471 @default.
- W2889699275 cites W2301088238 @default.
- W2889699275 cites W2513277014 @default.
- W2889699275 cites W2561287451 @default.
- W2889699275 cites W2605371346 @default.
- W2889699275 cites W2607210610 @default.
- W2889699275 cites W2609134281 @default.
- W2889699275 doi "https://doi.org/10.3390/min8110526" @default.
- W2889699275 hasPublicationYear "2018" @default.
- W2889699275 type Work @default.
- W2889699275 sameAs 2889699275 @default.
- W2889699275 citedByCount "25" @default.
- W2889699275 countsByYear W28896992752019 @default.
- W2889699275 countsByYear W28896992752020 @default.
- W2889699275 countsByYear W28896992752021 @default.
- W2889699275 countsByYear W28896992752022 @default.
- W2889699275 countsByYear W28896992752023 @default.
- W2889699275 crossrefType "journal-article" @default.
- W2889699275 hasAuthorship W2889699275A5003987315 @default.
- W2889699275 hasAuthorship W2889699275A5006511636 @default.
- W2889699275 hasAuthorship W2889699275A5039370924 @default.
- W2889699275 hasAuthorship W2889699275A5043716768 @default.
- W2889699275 hasAuthorship W2889699275A5064400876 @default.
- W2889699275 hasAuthorship W2889699275A5079040033 @default.
- W2889699275 hasAuthorship W2889699275A5091555779 @default.
- W2889699275 hasBestOaLocation W28896992751 @default.
- W2889699275 hasConcept C127313418 @default.
- W2889699275 hasConcept C156622251 @default.
- W2889699275 hasConcept C165205528 @default.
- W2889699275 hasConcept C17409809 @default.
- W2889699275 hasConcept C178790620 @default.
- W2889699275 hasConcept C185592680 @default.
- W2889699275 hasConcept C195081551 @default.
- W2889699275 hasConcept C199289684 @default.
- W2889699275 hasConcept C2776062231 @default.
- W2889699275 hasConcept C2776268066 @default.
- W2889699275 hasConcept C2776277684 @default.
- W2889699275 hasConcept C2777163820 @default.
- W2889699275 hasConcept C2777335606 @default.
- W2889699275 hasConcept C2778188036 @default.
- W2889699275 hasConcept C2780184401 @default.
- W2889699275 hasConcept C2780596425 @default.
- W2889699275 hasConcept C34682378 @default.