Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889759829> ?p ?o ?g. }
- W2889759829 endingPage "303" @default.
- W2889759829 startingPage "287" @default.
- W2889759829 abstract "Abstract Landslides represent hazardous phenomena, often with significant implications. Monitoring landslides with time‐series surface observations can indicate surface failure. Unmanned aerial vehicles (UAVs) employing compact digital cameras, in conjunction with structure‐from‐motion (SfM) and multi‐view stereo (MVS) image processing approaches, have become commonplace in the geoscience research community. These methods offer relatively low‐cost, flexible solutions for many geomorphological monitoring applications. However, conventionally ground control points (GCPs) are required for registration purposes, the provision of which is often expensive, difficult or even impracticable in hazardous and inaccessible terrain. In an attempt to overcome the reliance on GCPs, this paper reports research that has developed a morphology‐based strategy to co‐register multi‐temporal UAV‐derived products. It applies the attribute of curvature in combination with the scale‐invariant feature transform algorithm, to generate time‐invariant curvature features, which serve as pseudo‐GCPs. Openness, a surface morphological digital elevation model derivative, is applied to identify relatively stable ground regions from which pseudo‐GCPs are selected. A sensitivity threshold quantifies the minimum detectable change alongside unresolved biases and misalignment errors. The approach is evaluated at two study sites in the UK, first at Sandford with artificially induced surface change, and second at an active landslide at Hollin Hill, with multi‐epoch SfM‐MVS products derived from a consumer‐grade UAV. Elevation changes and annual displacement rates at dm‐level are estimated, with optimal results achieved over winter periods. The morphology‐based co‐registration strategy resulted in relative error ratios (i.e. mean error divided by average flying height) in the range 1:800–2500, comparable with those reported by similar studies conducted with UAVs augmented with real time kinematic (RTK)‐Global Navigation Satellite Systems. Analysis demonstrates the potential of the morphology‐based strategy for a semi‐automatic, and practical co‐registration approach to quantify surface motion. This can ultimately complement geotechnical and geophysical investigations and support the understanding of landslide behaviour, model prediction and construction of measures for mitigating risks. © 2018 John Wiley & Sons, Ltd." @default.
- W2889759829 created "2018-09-27" @default.
- W2889759829 creator A5028790849 @default.
- W2889759829 creator A5047838227 @default.
- W2889759829 creator A5050268526 @default.
- W2889759829 creator A5068422584 @default.
- W2889759829 creator A5072568459 @default.
- W2889759829 date "2018-10-09" @default.
- W2889759829 modified "2023-10-13" @default.
- W2889759829 title "Automated co-registration and calibration in SfM photogrammetry for landslide change detection" @default.
- W2889759829 cites W1773543203 @default.
- W2889759829 cites W1928585742 @default.
- W2889759829 cites W1932721871 @default.
- W2889759829 cites W1953450909 @default.
- W2889759829 cites W1959229705 @default.
- W2889759829 cites W1969136216 @default.
- W2889759829 cites W1970331803 @default.
- W2889759829 cites W1972214880 @default.
- W2889759829 cites W1974173367 @default.
- W2889759829 cites W1975809100 @default.
- W2889759829 cites W1996705598 @default.
- W2889759829 cites W1999619310 @default.
- W2889759829 cites W2010716361 @default.
- W2889759829 cites W2023138554 @default.
- W2889759829 cites W2026262541 @default.
- W2889759829 cites W2030233108 @default.
- W2889759829 cites W2037402385 @default.
- W2889759829 cites W2037438634 @default.
- W2889759829 cites W2050223677 @default.
- W2889759829 cites W2055429482 @default.
- W2889759829 cites W2064499898 @default.
- W2889759829 cites W2065217067 @default.
- W2889759829 cites W2080634972 @default.
- W2889759829 cites W2085261163 @default.
- W2889759829 cites W2090265020 @default.
- W2889759829 cites W2102000110 @default.
- W2889759829 cites W2120619026 @default.
- W2889759829 cites W2129201358 @default.
- W2889759829 cites W2151103935 @default.
- W2889759829 cites W2154271224 @default.
- W2889759829 cites W2187054651 @default.
- W2889759829 cites W2219174057 @default.
- W2889759829 cites W2313695792 @default.
- W2889759829 cites W2340703094 @default.
- W2889759829 cites W2346466032 @default.
- W2889759829 cites W2401529287 @default.
- W2889759829 cites W2426844244 @default.
- W2889759829 cites W2438192244 @default.
- W2889759829 cites W2471461980 @default.
- W2889759829 cites W2519669455 @default.
- W2889759829 cites W2554763618 @default.
- W2889759829 cites W2558832094 @default.
- W2889759829 cites W2559943767 @default.
- W2889759829 cites W2562374339 @default.
- W2889759829 cites W2598533724 @default.
- W2889759829 cites W2765763053 @default.
- W2889759829 cites W4243820936 @default.
- W2889759829 doi "https://doi.org/10.1002/esp.4502" @default.
- W2889759829 hasPublicationYear "2018" @default.
- W2889759829 type Work @default.
- W2889759829 sameAs 2889759829 @default.
- W2889759829 citedByCount "28" @default.
- W2889759829 countsByYear W28897598292019 @default.
- W2889759829 countsByYear W28897598292020 @default.
- W2889759829 countsByYear W28897598292021 @default.
- W2889759829 countsByYear W28897598292022 @default.
- W2889759829 countsByYear W28897598292023 @default.
- W2889759829 crossrefType "journal-article" @default.
- W2889759829 hasAuthorship W2889759829A5028790849 @default.
- W2889759829 hasAuthorship W2889759829A5047838227 @default.
- W2889759829 hasAuthorship W2889759829A5050268526 @default.
- W2889759829 hasAuthorship W2889759829A5068422584 @default.
- W2889759829 hasAuthorship W2889759829A5072568459 @default.
- W2889759829 hasBestOaLocation W28897598291 @default.
- W2889759829 hasConcept C114793014 @default.
- W2889759829 hasConcept C117455697 @default.
- W2889759829 hasConcept C127313418 @default.
- W2889759829 hasConcept C154945302 @default.
- W2889759829 hasConcept C161840515 @default.
- W2889759829 hasConcept C181843262 @default.
- W2889759829 hasConcept C186295008 @default.
- W2889759829 hasConcept C203595873 @default.
- W2889759829 hasConcept C205649164 @default.
- W2889759829 hasConcept C2524010 @default.
- W2889759829 hasConcept C31972630 @default.
- W2889759829 hasConcept C33923547 @default.
- W2889759829 hasConcept C37054046 @default.
- W2889759829 hasConcept C41008148 @default.
- W2889759829 hasConcept C58640448 @default.
- W2889759829 hasConcept C62649853 @default.
- W2889759829 hasConceptScore W2889759829C114793014 @default.
- W2889759829 hasConceptScore W2889759829C117455697 @default.
- W2889759829 hasConceptScore W2889759829C127313418 @default.
- W2889759829 hasConceptScore W2889759829C154945302 @default.
- W2889759829 hasConceptScore W2889759829C161840515 @default.
- W2889759829 hasConceptScore W2889759829C181843262 @default.
- W2889759829 hasConceptScore W2889759829C186295008 @default.
- W2889759829 hasConceptScore W2889759829C203595873 @default.