Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889764698> ?p ?o ?g. }
- W2889764698 endingPage "520" @default.
- W2889764698 startingPage "494" @default.
- W2889764698 abstract "The pervasive use of electronic health databases has increased the accessibility of free-text clinical reports for supplementary use. Several text classification approaches, such as supervised machine learning (SML) or rule-based approaches, have been utilized to obtain beneficial information from free-text clinical reports. In recent years, many researchers have worked in the clinical text classification field and published their results in academic journals. However, to the best of our knowledge, no comprehensive systematic literature review (SLR) has recapitulated the existing primary studies on clinical text classification in the last five years. Thus, the current study aims to present SLR of academic articles on clinical text classification published from January 2013 to January 2018. Accordingly, we intend to maximize the procedural decision analysis in six aspects, namely, types of clinical reports, data sets and their characteristics, pre-processing and sampling techniques, feature engineering, machine learning algorithms, and performance metrics. To achieve our objective, 72 primary studies from 8 bibliographic databases were systematically selected and rigorously reviewed from the perspective of the six aspects. This review identified nine types of clinical reports, four types of data sets (i.e., homogeneous–homogenous, homogenous–heterogeneous, heterogeneous–homogenous, and heterogeneous–heterogeneous), two sampling techniques (i.e., over-sampling and under-sampling), and nine pre-processing techniques. Moreover, this review determined bag of words, bag of phrases, and bag of concepts features when represented by either term frequency or term frequency with inverse document frequency, thereby showing improved classification results. SML-based or rule-based approaches were generally employed to classify the clinical reports. To measure the performance of these classification approaches, we used precision, recall, F-measure, accuracy, AUC, and specificity in binary class problems. In multi-class problems, we primarily used micro or macro-averaging precision, recall, or F-measure. Lastly, open research issues and challenges are presented for future scholars who are interested in clinical text classification. This SLR will definitely be a beneficial resource for researchers engaged in clinical text classification." @default.
- W2889764698 created "2018-09-27" @default.
- W2889764698 creator A5010457539 @default.
- W2889764698 creator A5024356175 @default.
- W2889764698 creator A5025895244 @default.
- W2889764698 creator A5030618085 @default.
- W2889764698 creator A5040454046 @default.
- W2889764698 creator A5044186969 @default.
- W2889764698 creator A5063246689 @default.
- W2889764698 creator A5091792637 @default.
- W2889764698 date "2019-02-01" @default.
- W2889764698 modified "2023-10-14" @default.
- W2889764698 title "Clinical text classification research trends: Systematic literature review and open issues" @default.
- W2889764698 cites W1120896806 @default.
- W2889764698 cites W1550668049 @default.
- W2889764698 cites W1775813496 @default.
- W2889764698 cites W1903317220 @default.
- W2889764698 cites W1912982817 @default.
- W2889764698 cites W1927503436 @default.
- W2889764698 cites W1966108216 @default.
- W2889764698 cites W1970250140 @default.
- W2889764698 cites W1996582212 @default.
- W2889764698 cites W2007367842 @default.
- W2889764698 cites W2012560661 @default.
- W2889764698 cites W2022645200 @default.
- W2889764698 cites W2031167046 @default.
- W2889764698 cites W2053715834 @default.
- W2889764698 cites W2054290230 @default.
- W2889764698 cites W2071478164 @default.
- W2889764698 cites W2076500773 @default.
- W2889764698 cites W2089468765 @default.
- W2889764698 cites W2097089247 @default.
- W2889764698 cites W2104321900 @default.
- W2889764698 cites W2107726111 @default.
- W2889764698 cites W2112994713 @default.
- W2889764698 cites W2118020653 @default.
- W2889764698 cites W2126185804 @default.
- W2889764698 cites W2129627823 @default.
- W2889764698 cites W2132886902 @default.
- W2889764698 cites W2134090438 @default.
- W2889764698 cites W2148143831 @default.
- W2889764698 cites W2149124578 @default.
- W2889764698 cites W2152579687 @default.
- W2889764698 cites W2153081307 @default.
- W2889764698 cites W2158698691 @default.
- W2889764698 cites W2161336914 @default.
- W2889764698 cites W2165698076 @default.
- W2889764698 cites W2166627015 @default.
- W2889764698 cites W2170505850 @default.
- W2889764698 cites W2173884055 @default.
- W2889764698 cites W2175727069 @default.
- W2889764698 cites W2180216841 @default.
- W2889764698 cites W2190537655 @default.
- W2889764698 cites W2211685579 @default.
- W2889764698 cites W2230587849 @default.
- W2889764698 cites W2234417453 @default.
- W2889764698 cites W2263896607 @default.
- W2889764698 cites W2276520418 @default.
- W2889764698 cites W2312555959 @default.
- W2889764698 cites W2405148542 @default.
- W2889764698 cites W2410109979 @default.
- W2889764698 cites W2412972264 @default.
- W2889764698 cites W2423965850 @default.
- W2889764698 cites W2436348070 @default.
- W2889764698 cites W2469725737 @default.
- W2889764698 cites W2509888018 @default.
- W2889764698 cites W2529203253 @default.
- W2889764698 cites W2531468880 @default.
- W2889764698 cites W2552163170 @default.
- W2889764698 cites W2568818165 @default.
- W2889764698 cites W2584937702 @default.
- W2889764698 cites W2587516060 @default.
- W2889764698 cites W2592944349 @default.
- W2889764698 cites W2593978202 @default.
- W2889764698 cites W2601846009 @default.
- W2889764698 cites W2605389978 @default.
- W2889764698 cites W2621588820 @default.
- W2889764698 cites W2726665423 @default.
- W2889764698 cites W2729016304 @default.
- W2889764698 cites W2730718977 @default.
- W2889764698 cites W2732690754 @default.
- W2889764698 cites W2736476613 @default.
- W2889764698 cites W2749353156 @default.
- W2889764698 cites W2749535755 @default.
- W2889764698 cites W2801547136 @default.
- W2889764698 cites W2802787326 @default.
- W2889764698 cites W2919115771 @default.
- W2889764698 cites W2949479579 @default.
- W2889764698 cites W3023430131 @default.
- W2889764698 cites W327991062 @default.
- W2889764698 cites W4210997624 @default.
- W2889764698 cites W4240624099 @default.
- W2889764698 doi "https://doi.org/10.1016/j.eswa.2018.09.034" @default.
- W2889764698 hasPublicationYear "2019" @default.
- W2889764698 type Work @default.
- W2889764698 sameAs 2889764698 @default.
- W2889764698 citedByCount "66" @default.
- W2889764698 countsByYear W28897646982018 @default.