Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889771323> ?p ?o ?g. }
- W2889771323 endingPage "1398" @default.
- W2889771323 startingPage "1398" @default.
- W2889771323 abstract "A new algorithm for the estimation of atmospheric temperature (T) and water vapor (WV) vertical profiles in nonprecipitating conditions is presented. The microwave random forest temperature and water vapor (MiRTaW) profiling algorithm is based on the random forest (RF) technique and it uses microwave (MW) sounding from the Advanced Technology Microwave Sounder (ATMS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. Three different data sources were chosen for both training and validation purposes, namely, the ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF), the Infrared Atmospheric Sounding Interferometer Atmospheric Temperature Water Vapour and Surface Skin Temperature (IASI L2 v6) from the Meteorological Operational satellites of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and the radiosonde observations from the Integrated Global Radiosonde Archive (IGRA). The period from 2012 to 2016 was considered in the training dataset; particular attention was paid to the instance selection procedure, in order to reduce the full training dataset with negligible information loss. The out-of-bag (OOB) error was computed and used to select the optimal RF parameters. Different RFs were trained, one for each vertical level: 32 levels for T (within 10–1000 hPa) and 23 levels for WV (200–1000 hPa). The validation of the MiRTaW profiling algorithm was conducted on a dataset from 2017. The mean bias error (MBE) of T vertical profiles ranges within about (−0.4–0.4) K, while for the WV mixing ratio, the MBE starts at ~0.5 g/kg near the surface and decreases to ~0 g/kg at 200 hPa level, in line with the expectations." @default.
- W2889771323 created "2018-09-27" @default.
- W2889771323 creator A5001434327 @default.
- W2889771323 creator A5010509577 @default.
- W2889771323 creator A5027021214 @default.
- W2889771323 creator A5045346198 @default.
- W2889771323 creator A5057115921 @default.
- W2889771323 creator A5063760127 @default.
- W2889771323 creator A5073597872 @default.
- W2889771323 creator A5083469177 @default.
- W2889771323 creator A5084102486 @default.
- W2889771323 creator A5085168250 @default.
- W2889771323 creator A5085351773 @default.
- W2889771323 creator A5085467206 @default.
- W2889771323 creator A5006790952 @default.
- W2889771323 creator A5009624554 @default.
- W2889771323 date "2018-09-02" @default.
- W2889771323 modified "2023-10-06" @default.
- W2889771323 title "MiRTaW: An Algorithm for Atmospheric Temperature and Water Vapor Profile Estimation from ATMS Measurements Using a Random Forests Technique" @default.
- W2889771323 cites W1495761489 @default.
- W2889771323 cites W1540118690 @default.
- W2889771323 cites W1827315262 @default.
- W2889771323 cites W1845410120 @default.
- W2889771323 cites W1913730848 @default.
- W2889771323 cites W1964146567 @default.
- W2889771323 cites W1969226165 @default.
- W2889771323 cites W1975263506 @default.
- W2889771323 cites W1976153422 @default.
- W2889771323 cites W1985372952 @default.
- W2889771323 cites W1988195734 @default.
- W2889771323 cites W1990536516 @default.
- W2889771323 cites W1990653740 @default.
- W2889771323 cites W1996611037 @default.
- W2889771323 cites W1997611286 @default.
- W2889771323 cites W2012458142 @default.
- W2889771323 cites W2016866892 @default.
- W2889771323 cites W2022509227 @default.
- W2889771323 cites W2022907025 @default.
- W2889771323 cites W2030102203 @default.
- W2889771323 cites W2035221792 @default.
- W2889771323 cites W2037900218 @default.
- W2889771323 cites W2039069921 @default.
- W2889771323 cites W2046719997 @default.
- W2889771323 cites W2049868698 @default.
- W2889771323 cites W2052115269 @default.
- W2889771323 cites W2057747229 @default.
- W2889771323 cites W2058718167 @default.
- W2889771323 cites W2063854460 @default.
- W2889771323 cites W2072463188 @default.
- W2889771323 cites W2073224943 @default.
- W2889771323 cites W2075641388 @default.
- W2889771323 cites W2084371657 @default.
- W2889771323 cites W2088399333 @default.
- W2889771323 cites W2091373670 @default.
- W2889771323 cites W2095852053 @default.
- W2889771323 cites W2098552207 @default.
- W2889771323 cites W2116362051 @default.
- W2889771323 cites W2120802181 @default.
- W2889771323 cites W2121745948 @default.
- W2889771323 cites W2121767844 @default.
- W2889771323 cites W2125274574 @default.
- W2889771323 cites W2135952286 @default.
- W2889771323 cites W2146598934 @default.
- W2889771323 cites W2149742258 @default.
- W2889771323 cites W2150776916 @default.
- W2889771323 cites W2154432116 @default.
- W2889771323 cites W2163943318 @default.
- W2889771323 cites W2174435849 @default.
- W2889771323 cites W2176119523 @default.
- W2889771323 cites W2249993009 @default.
- W2889771323 cites W2308655584 @default.
- W2889771323 cites W2312591999 @default.
- W2889771323 cites W2441344980 @default.
- W2889771323 cites W2492045328 @default.
- W2889771323 cites W2595918220 @default.
- W2889771323 cites W2608565375 @default.
- W2889771323 cites W2611561672 @default.
- W2889771323 cites W2639633950 @default.
- W2889771323 cites W2758235939 @default.
- W2889771323 cites W2806268819 @default.
- W2889771323 cites W2911964244 @default.
- W2889771323 doi "https://doi.org/10.3390/rs10091398" @default.
- W2889771323 hasPublicationYear "2018" @default.
- W2889771323 type Work @default.
- W2889771323 sameAs 2889771323 @default.
- W2889771323 citedByCount "7" @default.
- W2889771323 countsByYear W28897713232019 @default.
- W2889771323 countsByYear W28897713232020 @default.
- W2889771323 countsByYear W28897713232022 @default.
- W2889771323 crossrefType "journal-article" @default.
- W2889771323 hasAuthorship W2889771323A5001434327 @default.
- W2889771323 hasAuthorship W2889771323A5006790952 @default.
- W2889771323 hasAuthorship W2889771323A5009624554 @default.
- W2889771323 hasAuthorship W2889771323A5010509577 @default.
- W2889771323 hasAuthorship W2889771323A5027021214 @default.
- W2889771323 hasAuthorship W2889771323A5045346198 @default.
- W2889771323 hasAuthorship W2889771323A5057115921 @default.
- W2889771323 hasAuthorship W2889771323A5063760127 @default.