Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889804527> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2889804527 abstract "Emotion is a very essential aspect in day-to-day life. Emotion can be analyzed by using facial expression, gesture, verbally, and many other ways. But there are some demerits in this technique, so Electroencephalography (EEG) signal is used for recognition of emotion. The most important role of wavelet transform is to remove the noise from the biomedical signals. Analysis of EEG signals using computational intelligence technique like discrete wavelet transform and bionic wavelet transform is presented in this paper. A new modified wavelet transform called Bionic Wavelet Transform (BWT) has been applied here for analysis of biomedical signals. By adapting value of scales, T-function of bionic wavelet transform is varied and its effects on the value of the threshold are noticed. This is called the BWT which is used for emotion recognition using EEG signals. For classification purposes, different classifiers, i.e., Artificial neural network (ANN), k-nearest neighbor (K-NN), Naive Bayes, and support vector machine (SVM) are presented in this paper. From the proposed algorithm, i.e., with BWT, it is observed that the emotion is better classified than with WT. EEG data are taken from enterface06_emobrain dataset in which there is having the dataset of two subjects which are applied to evaluate the performance of the proposed classifier. In order to find the best method for denoising, signal-to-noise ratio is calculated for different emotions of EEG signal and it is observed that BWT removes the noise better from EEG signal than WT." @default.
- W2889804527 created "2018-09-27" @default.
- W2889804527 creator A5043606143 @default.
- W2889804527 creator A5057213786 @default.
- W2889804527 date "2018-09-19" @default.
- W2889804527 modified "2023-09-25" @default.
- W2889804527 title "Analysis of EEG Signals for Emotion Recognition Using Different Computational Intelligence Techniques" @default.
- W2889804527 cites W2066702759 @default.
- W2889804527 cites W2120865001 @default.
- W2889804527 cites W2156482158 @default.
- W2889804527 doi "https://doi.org/10.1007/978-981-13-1822-1_49" @default.
- W2889804527 hasPublicationYear "2018" @default.
- W2889804527 type Work @default.
- W2889804527 sameAs 2889804527 @default.
- W2889804527 citedByCount "1" @default.
- W2889804527 countsByYear W28898045272020 @default.
- W2889804527 crossrefType "book-chapter" @default.
- W2889804527 hasAuthorship W2889804527A5043606143 @default.
- W2889804527 hasAuthorship W2889804527A5057213786 @default.
- W2889804527 hasConcept C115961682 @default.
- W2889804527 hasConcept C118552586 @default.
- W2889804527 hasConcept C12267149 @default.
- W2889804527 hasConcept C153180895 @default.
- W2889804527 hasConcept C154945302 @default.
- W2889804527 hasConcept C15744967 @default.
- W2889804527 hasConcept C163294075 @default.
- W2889804527 hasConcept C196216189 @default.
- W2889804527 hasConcept C199360897 @default.
- W2889804527 hasConcept C206310091 @default.
- W2889804527 hasConcept C2779843651 @default.
- W2889804527 hasConcept C28490314 @default.
- W2889804527 hasConcept C41008148 @default.
- W2889804527 hasConcept C46286280 @default.
- W2889804527 hasConcept C47432892 @default.
- W2889804527 hasConcept C52001869 @default.
- W2889804527 hasConcept C522805319 @default.
- W2889804527 hasConcept C95623464 @default.
- W2889804527 hasConcept C99498987 @default.
- W2889804527 hasConceptScore W2889804527C115961682 @default.
- W2889804527 hasConceptScore W2889804527C118552586 @default.
- W2889804527 hasConceptScore W2889804527C12267149 @default.
- W2889804527 hasConceptScore W2889804527C153180895 @default.
- W2889804527 hasConceptScore W2889804527C154945302 @default.
- W2889804527 hasConceptScore W2889804527C15744967 @default.
- W2889804527 hasConceptScore W2889804527C163294075 @default.
- W2889804527 hasConceptScore W2889804527C196216189 @default.
- W2889804527 hasConceptScore W2889804527C199360897 @default.
- W2889804527 hasConceptScore W2889804527C206310091 @default.
- W2889804527 hasConceptScore W2889804527C2779843651 @default.
- W2889804527 hasConceptScore W2889804527C28490314 @default.
- W2889804527 hasConceptScore W2889804527C41008148 @default.
- W2889804527 hasConceptScore W2889804527C46286280 @default.
- W2889804527 hasConceptScore W2889804527C47432892 @default.
- W2889804527 hasConceptScore W2889804527C52001869 @default.
- W2889804527 hasConceptScore W2889804527C522805319 @default.
- W2889804527 hasConceptScore W2889804527C95623464 @default.
- W2889804527 hasConceptScore W2889804527C99498987 @default.
- W2889804527 hasLocation W28898045271 @default.
- W2889804527 hasOpenAccess W2889804527 @default.
- W2889804527 hasPrimaryLocation W28898045271 @default.
- W2889804527 hasRelatedWork W1549124279 @default.
- W2889804527 hasRelatedWork W2158240667 @default.
- W2889804527 hasRelatedWork W2607226804 @default.
- W2889804527 hasRelatedWork W2783979910 @default.
- W2889804527 hasRelatedWork W2911623453 @default.
- W2889804527 hasRelatedWork W2936830707 @default.
- W2889804527 hasRelatedWork W3203501097 @default.
- W2889804527 hasRelatedWork W4206115908 @default.
- W2889804527 hasRelatedWork W4286960226 @default.
- W2889804527 hasRelatedWork W2465673554 @default.
- W2889804527 isParatext "false" @default.
- W2889804527 isRetracted "false" @default.
- W2889804527 magId "2889804527" @default.
- W2889804527 workType "book-chapter" @default.