Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889916571> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2889916571 abstract "The integration operators (*) (({mathscr J}^+,g)(x) = int _a^x g(t) , dt) and (**) (({mathscr J}^-,g)(x) = int _x^b g(t) , dt) defined on an interval (a, b) ⊆R yield new identities for indefinite convolutions, control theory, Laplace and Fourier transform inversion, solution of differential equations, and solution of the classical Wiener–Hopf integral equations. These identities are expressed in terms of ({mathscr J}^pm ) and they are thus esoteric. However the integrals (*) and (**) can be approximated in many ways, yielding novel and very accurate methods of approximating all of the above listed relations. Several examples are presented, mainly using Legendre polynomial as approximations, and references are given for approximation of some of the operations using Sinc methods. These examples illustrate for a class of sampled statistical models, the possibility of reconstructing models much more efficiently than by the usual slow Monte–Carlo (({mathscr O}(N^{-1/2})) rate. Our examples illustrate that we need only sample at 5 points to get a representation of a model that is uniformly accurate to nearly 3 significant figure accuracy." @default.
- W2889916571 created "2018-09-27" @default.
- W2889916571 creator A5081451125 @default.
- W2889916571 date "2020-08-07" @default.
- W2889916571 modified "2023-09-25" @default.
- W2889916571 title "Indefinite Integration Operators Identities, and Their Approximations" @default.
- W2889916571 cites W2015076856 @default.
- W2889916571 cites W2030296023 @default.
- W2889916571 cites W2032137165 @default.
- W2889916571 cites W2084423306 @default.
- W2889916571 cites W2402719435 @default.
- W2889916571 cites W2496267612 @default.
- W2889916571 cites W2588689835 @default.
- W2889916571 cites W2948349556 @default.
- W2889916571 cites W4230290050 @default.
- W2889916571 cites W4236786787 @default.
- W2889916571 doi "https://doi.org/10.1007/978-3-030-49716-3_9" @default.
- W2889916571 hasPublicationYear "2020" @default.
- W2889916571 type Work @default.
- W2889916571 sameAs 2889916571 @default.
- W2889916571 citedByCount "0" @default.
- W2889916571 crossrefType "book-chapter" @default.
- W2889916571 hasAuthorship W2889916571A5081451125 @default.
- W2889916571 hasBestOaLocation W28899165712 @default.
- W2889916571 hasConcept C102519508 @default.
- W2889916571 hasConcept C111458787 @default.
- W2889916571 hasConcept C114614502 @default.
- W2889916571 hasConcept C134306372 @default.
- W2889916571 hasConcept C152303783 @default.
- W2889916571 hasConcept C2778067643 @default.
- W2889916571 hasConcept C28826006 @default.
- W2889916571 hasConcept C33923547 @default.
- W2889916571 hasConcept C90119067 @default.
- W2889916571 hasConcept C97937538 @default.
- W2889916571 hasConceptScore W2889916571C102519508 @default.
- W2889916571 hasConceptScore W2889916571C111458787 @default.
- W2889916571 hasConceptScore W2889916571C114614502 @default.
- W2889916571 hasConceptScore W2889916571C134306372 @default.
- W2889916571 hasConceptScore W2889916571C152303783 @default.
- W2889916571 hasConceptScore W2889916571C2778067643 @default.
- W2889916571 hasConceptScore W2889916571C28826006 @default.
- W2889916571 hasConceptScore W2889916571C33923547 @default.
- W2889916571 hasConceptScore W2889916571C90119067 @default.
- W2889916571 hasConceptScore W2889916571C97937538 @default.
- W2889916571 hasLocation W28899165711 @default.
- W2889916571 hasLocation W28899165712 @default.
- W2889916571 hasOpenAccess W2889916571 @default.
- W2889916571 hasPrimaryLocation W28899165711 @default.
- W2889916571 hasRelatedWork W10483179 @default.
- W2889916571 hasRelatedWork W13424166 @default.
- W2889916571 hasRelatedWork W15563313 @default.
- W2889916571 hasRelatedWork W19770772 @default.
- W2889916571 hasRelatedWork W24631348 @default.
- W2889916571 hasRelatedWork W4717548 @default.
- W2889916571 hasRelatedWork W47197418 @default.
- W2889916571 hasRelatedWork W61281008 @default.
- W2889916571 hasRelatedWork W65145935 @default.
- W2889916571 hasRelatedWork W35556949 @default.
- W2889916571 isParatext "false" @default.
- W2889916571 isRetracted "false" @default.
- W2889916571 magId "2889916571" @default.
- W2889916571 workType "book-chapter" @default.