Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889957900> ?p ?o ?g. }
- W2889957900 endingPage "2437" @default.
- W2889957900 startingPage "2437" @default.
- W2889957900 abstract "Forecasting dissolved gas content in power transformers plays a significant role in detecting incipient faults and maintaining the safety of the power system. Though various forecasting models have been developed, there is still room to further improve prediction performance. In this paper, a new forecasting model is proposed by combining mixed kernel function-based support vector regression (MKF-SVR) and genetic algorithm (GA). First, forecasting performance of SVR models constructed with a single kernel are compared, and then Gaussian kernel and polynomial kernel are retained due to better learning and prediction ability. Next, a mixed kernel, which integrates a Gaussian kernel with a polynomial kernel, is used to establish a SVR-based forecasting model. Genetic algorithm (GA) and leave-one-out cross validation are employed to determine the free parameters of MKF-SVR, while mean absolute percentage error (MAPE) and squared correlation coefficient (r2) are applied to assess the quality of the parameters. The proposed model is implemented on a practical dissolved gas dataset and promising results are obtained. Finally, the forecasting performance of the proposed model is compared with three other approaches, including RBFNN, GRNN and GM. The experimental and comparison results demonstrate that the proposed model outperforms other popular models in terms of forecasting accuracy and fitting capability." @default.
- W2889957900 created "2018-09-27" @default.
- W2889957900 creator A5019060174 @default.
- W2889957900 creator A5019323972 @default.
- W2889957900 creator A5030603287 @default.
- W2889957900 creator A5066688127 @default.
- W2889957900 creator A5067267092 @default.
- W2889957900 date "2018-09-14" @default.
- W2889957900 modified "2023-09-25" @default.
- W2889957900 title "Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformers" @default.
- W2889957900 cites W1554132173 @default.
- W2889957900 cites W1564372824 @default.
- W2889957900 cites W1871376293 @default.
- W2889957900 cites W1976329015 @default.
- W2889957900 cites W1979027715 @default.
- W2889957900 cites W1982576552 @default.
- W2889957900 cites W1990011917 @default.
- W2889957900 cites W2010320844 @default.
- W2889957900 cites W2015025818 @default.
- W2889957900 cites W2042683698 @default.
- W2889957900 cites W2042816221 @default.
- W2889957900 cites W2067248431 @default.
- W2889957900 cites W2080850431 @default.
- W2889957900 cites W2084880510 @default.
- W2889957900 cites W2089217930 @default.
- W2889957900 cites W2116622640 @default.
- W2889957900 cites W2170559427 @default.
- W2889957900 cites W2198869818 @default.
- W2889957900 cites W2250875882 @default.
- W2889957900 cites W2297491514 @default.
- W2889957900 cites W2344696956 @default.
- W2889957900 cites W2409143197 @default.
- W2889957900 cites W2489377329 @default.
- W2889957900 cites W2491978341 @default.
- W2889957900 cites W2516429987 @default.
- W2889957900 cites W2556470563 @default.
- W2889957900 cites W2561991667 @default.
- W2889957900 cites W2563914516 @default.
- W2889957900 cites W2606032898 @default.
- W2889957900 cites W2608946692 @default.
- W2889957900 cites W2746076170 @default.
- W2889957900 cites W2766230721 @default.
- W2889957900 cites W2769514134 @default.
- W2889957900 cites W2775259072 @default.
- W2889957900 cites W2785947435 @default.
- W2889957900 cites W2787103659 @default.
- W2889957900 cites W2792332970 @default.
- W2889957900 cites W2796963976 @default.
- W2889957900 cites W2811460789 @default.
- W2889957900 doi "https://doi.org/10.3390/en11092437" @default.
- W2889957900 hasPublicationYear "2018" @default.
- W2889957900 type Work @default.
- W2889957900 sameAs 2889957900 @default.
- W2889957900 citedByCount "13" @default.
- W2889957900 countsByYear W28899579002019 @default.
- W2889957900 countsByYear W28899579002020 @default.
- W2889957900 countsByYear W28899579002021 @default.
- W2889957900 countsByYear W28899579002022 @default.
- W2889957900 countsByYear W28899579002023 @default.
- W2889957900 crossrefType "journal-article" @default.
- W2889957900 hasAuthorship W2889957900A5019060174 @default.
- W2889957900 hasAuthorship W2889957900A5019323972 @default.
- W2889957900 hasAuthorship W2889957900A5030603287 @default.
- W2889957900 hasAuthorship W2889957900A5066688127 @default.
- W2889957900 hasAuthorship W2889957900A5067267092 @default.
- W2889957900 hasBestOaLocation W28899579001 @default.
- W2889957900 hasConcept C105795698 @default.
- W2889957900 hasConcept C11413529 @default.
- W2889957900 hasConcept C114614502 @default.
- W2889957900 hasConcept C119857082 @default.
- W2889957900 hasConcept C120068334 @default.
- W2889957900 hasConcept C121332964 @default.
- W2889957900 hasConcept C122280245 @default.
- W2889957900 hasConcept C12267149 @default.
- W2889957900 hasConcept C139945424 @default.
- W2889957900 hasConcept C150217764 @default.
- W2889957900 hasConcept C152877465 @default.
- W2889957900 hasConcept C154945302 @default.
- W2889957900 hasConcept C160446489 @default.
- W2889957900 hasConcept C163716315 @default.
- W2889957900 hasConcept C33923547 @default.
- W2889957900 hasConcept C41008148 @default.
- W2889957900 hasConcept C50644808 @default.
- W2889957900 hasConcept C62520636 @default.
- W2889957900 hasConcept C7218915 @default.
- W2889957900 hasConcept C74193536 @default.
- W2889957900 hasConcept C75866337 @default.
- W2889957900 hasConcept C8880873 @default.
- W2889957900 hasConceptScore W2889957900C105795698 @default.
- W2889957900 hasConceptScore W2889957900C11413529 @default.
- W2889957900 hasConceptScore W2889957900C114614502 @default.
- W2889957900 hasConceptScore W2889957900C119857082 @default.
- W2889957900 hasConceptScore W2889957900C120068334 @default.
- W2889957900 hasConceptScore W2889957900C121332964 @default.
- W2889957900 hasConceptScore W2889957900C122280245 @default.
- W2889957900 hasConceptScore W2889957900C12267149 @default.
- W2889957900 hasConceptScore W2889957900C139945424 @default.
- W2889957900 hasConceptScore W2889957900C150217764 @default.