Matches in SemOpenAlex for { <https://semopenalex.org/work/W2889971214> ?p ?o ?g. }
- W2889971214 endingPage "7517" @default.
- W2889971214 startingPage "7509" @default.
- W2889971214 abstract "In nanoconfined thin films, numerous studies have revealed the thickness dependencies of different thermophysical properties, including the glass transition temperature (Tg) and self-diffusion coefficient (D). While quantitative relationships between these properties are well-known for bulk polymers, analogous relationships for nanoconfined polymers are still not clear. Herein, Tg−D relationships are studied under nanoconfinement using spectroscopic ellipsometry for measuring Tg and fluorescence recovery after photobleaching for measuring D. Poly(isobutyl methacrylate) (PiBMA) was selected as a model unentangled polymer, and it was nanoconfined to 14–300 nm thick films. Multilayered geometries incorporating PiBMA were constructed to systematically study the influence of free surfaces (i.e., polymer surfaces exposed directly to air, also called uncapped) and surfaces that were in contact with a secondary polymer (also called capped). This multilayer approach additionally allowed investigation of both relatively weak and strong interactions between the polymer and substrate, depending on the existence of hydrogen bonding. The Tg–D relationship observed in nanoconfined thin films deviated from that in the bulk state (e.g., as described by Williams–Landel–Ferry and Stokes–Einstein, or similar relationships). A model was employed that considered the effects of molecular friction between the different confining interfaces and PiBMA, and it successfully described the deviation from bulk behavior." @default.
- W2889971214 created "2018-09-27" @default.
- W2889971214 creator A5004925915 @default.
- W2889971214 creator A5043648937 @default.
- W2889971214 creator A5065880223 @default.
- W2889971214 creator A5081277145 @default.
- W2889971214 date "2018-09-17" @default.
- W2889971214 modified "2023-10-18" @default.
- W2889971214 title "Glass Transition and Self-Diffusion of Unentangled Polymer Melts Nanoconfined by Different Interfaces" @default.
- W2889971214 cites W1890834681 @default.
- W2889971214 cites W1959917679 @default.
- W2889971214 cites W1965026943 @default.
- W2889971214 cites W1967014046 @default.
- W2889971214 cites W1967270555 @default.
- W2889971214 cites W1977569739 @default.
- W2889971214 cites W1980492771 @default.
- W2889971214 cites W1983512333 @default.
- W2889971214 cites W1988385446 @default.
- W2889971214 cites W1990284496 @default.
- W2889971214 cites W1991761746 @default.
- W2889971214 cites W1995062017 @default.
- W2889971214 cites W2005626282 @default.
- W2889971214 cites W2016469320 @default.
- W2889971214 cites W2018919811 @default.
- W2889971214 cites W2022752999 @default.
- W2889971214 cites W2025164532 @default.
- W2889971214 cites W2025520929 @default.
- W2889971214 cites W2027768263 @default.
- W2889971214 cites W2029422848 @default.
- W2889971214 cites W2031520976 @default.
- W2889971214 cites W2034875509 @default.
- W2889971214 cites W2036964395 @default.
- W2889971214 cites W2037296504 @default.
- W2889971214 cites W2038502132 @default.
- W2889971214 cites W2039276239 @default.
- W2889971214 cites W2039660764 @default.
- W2889971214 cites W2040184556 @default.
- W2889971214 cites W2046097259 @default.
- W2889971214 cites W2050027062 @default.
- W2889971214 cites W2085079102 @default.
- W2889971214 cites W2090052014 @default.
- W2889971214 cites W2090730991 @default.
- W2889971214 cites W2092200943 @default.
- W2889971214 cites W2092699129 @default.
- W2889971214 cites W2093919954 @default.
- W2889971214 cites W2100785885 @default.
- W2889971214 cites W2101727111 @default.
- W2889971214 cites W2123068439 @default.
- W2889971214 cites W2126842368 @default.
- W2889971214 cites W2141075684 @default.
- W2889971214 cites W2143997675 @default.
- W2889971214 cites W2151471677 @default.
- W2889971214 cites W2156370397 @default.
- W2889971214 cites W2162911011 @default.
- W2889971214 cites W2170797104 @default.
- W2889971214 cites W2239600360 @default.
- W2889971214 cites W2241461390 @default.
- W2889971214 cites W2259709000 @default.
- W2889971214 cites W2277451016 @default.
- W2889971214 cites W2278515130 @default.
- W2889971214 cites W2313238975 @default.
- W2889971214 cites W2314188903 @default.
- W2889971214 cites W2314659567 @default.
- W2889971214 cites W2315663659 @default.
- W2889971214 cites W2317234974 @default.
- W2889971214 cites W2317740962 @default.
- W2889971214 cites W2320992117 @default.
- W2889971214 cites W2323723110 @default.
- W2889971214 cites W2326197465 @default.
- W2889971214 cites W2329212327 @default.
- W2889971214 cites W2332757326 @default.
- W2889971214 cites W2334459405 @default.
- W2889971214 cites W2343215401 @default.
- W2889971214 cites W2465532731 @default.
- W2889971214 cites W2568360335 @default.
- W2889971214 cites W2583553079 @default.
- W2889971214 cites W2601252332 @default.
- W2889971214 cites W2604342436 @default.
- W2889971214 cites W2607542725 @default.
- W2889971214 cites W3101712865 @default.
- W2889971214 cites W4241085416 @default.
- W2889971214 cites W4299576998 @default.
- W2889971214 doi "https://doi.org/10.1021/acs.macromol.8b00475" @default.
- W2889971214 hasPublicationYear "2018" @default.
- W2889971214 type Work @default.
- W2889971214 sameAs 2889971214 @default.
- W2889971214 citedByCount "15" @default.
- W2889971214 countsByYear W28899712142019 @default.
- W2889971214 countsByYear W28899712142020 @default.
- W2889971214 countsByYear W28899712142021 @default.
- W2889971214 countsByYear W28899712142022 @default.
- W2889971214 countsByYear W28899712142023 @default.
- W2889971214 crossrefType "journal-article" @default.
- W2889971214 hasAuthorship W2889971214A5004925915 @default.
- W2889971214 hasAuthorship W2889971214A5043648937 @default.
- W2889971214 hasAuthorship W2889971214A5065880223 @default.
- W2889971214 hasAuthorship W2889971214A5081277145 @default.
- W2889971214 hasConcept C120665830 @default.