Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890002510> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2890002510 abstract "Motivated by the encouraging results recently obtained by generative adversarial networks in various image processing tasks, we propose a conditional adversarial training framework to predict dimensional representations of emotion, i. e., arousal and valence, from speech signals. The framework consists of two networks, trained in an adversarial manner: The first network tries to predict emotion from acoustic features, while the second network aims at distinguishing between the predictions provided by the first network and the emotion labels from the database using the acoustic features as conditional information. We evaluate the performance of the proposed conditional adversarial training framework on the widely used emotion database RECOLA. Experimental results show that the proposed training strategy outperforms the conventional training method, and is comparable with, or even superior to other recently reported approaches, including deep and end-to-end learning." @default.
- W2890002510 created "2018-09-27" @default.
- W2890002510 creator A5019651318 @default.
- W2890002510 creator A5026933067 @default.
- W2890002510 creator A5036056631 @default.
- W2890002510 creator A5063262277 @default.
- W2890002510 creator A5069921704 @default.
- W2890002510 date "2018-04-01" @default.
- W2890002510 modified "2023-10-14" @default.
- W2890002510 title "Towards Conditional Adversarial Training for Predicting Emotions from Speech" @default.
- W2890002510 cites W2037441721 @default.
- W2890002510 cites W2045528981 @default.
- W2890002510 cites W2055332436 @default.
- W2890002510 cites W2087618018 @default.
- W2890002510 cites W2099471712 @default.
- W2890002510 cites W2099767163 @default.
- W2890002510 cites W211912913 @default.
- W2890002510 cites W2125389028 @default.
- W2890002510 cites W2343758848 @default.
- W2890002510 cites W2399733683 @default.
- W2890002510 cites W2576530755 @default.
- W2890002510 cites W2598545578 @default.
- W2890002510 cites W2666408839 @default.
- W2890002510 cites W2732459531 @default.
- W2890002510 cites W2746457594 @default.
- W2890002510 cites W2949999304 @default.
- W2890002510 cites W2963226019 @default.
- W2890002510 cites W2964201867 @default.
- W2890002510 cites W2964268978 @default.
- W2890002510 doi "https://doi.org/10.1109/icassp.2018.8462579" @default.
- W2890002510 hasPublicationYear "2018" @default.
- W2890002510 type Work @default.
- W2890002510 sameAs 2890002510 @default.
- W2890002510 citedByCount "13" @default.
- W2890002510 countsByYear W28900025102018 @default.
- W2890002510 countsByYear W28900025102019 @default.
- W2890002510 countsByYear W28900025102020 @default.
- W2890002510 countsByYear W28900025102021 @default.
- W2890002510 crossrefType "proceedings-article" @default.
- W2890002510 hasAuthorship W2890002510A5019651318 @default.
- W2890002510 hasAuthorship W2890002510A5026933067 @default.
- W2890002510 hasAuthorship W2890002510A5036056631 @default.
- W2890002510 hasAuthorship W2890002510A5063262277 @default.
- W2890002510 hasAuthorship W2890002510A5069921704 @default.
- W2890002510 hasBestOaLocation W28900025102 @default.
- W2890002510 hasConcept C108583219 @default.
- W2890002510 hasConcept C119857082 @default.
- W2890002510 hasConcept C121332964 @default.
- W2890002510 hasConcept C153294291 @default.
- W2890002510 hasConcept C154945302 @default.
- W2890002510 hasConcept C15744967 @default.
- W2890002510 hasConcept C169760540 @default.
- W2890002510 hasConcept C204321447 @default.
- W2890002510 hasConcept C2777211547 @default.
- W2890002510 hasConcept C2777438025 @default.
- W2890002510 hasConcept C28490314 @default.
- W2890002510 hasConcept C2988773926 @default.
- W2890002510 hasConcept C36951298 @default.
- W2890002510 hasConcept C37736160 @default.
- W2890002510 hasConcept C39890363 @default.
- W2890002510 hasConcept C41008148 @default.
- W2890002510 hasConceptScore W2890002510C108583219 @default.
- W2890002510 hasConceptScore W2890002510C119857082 @default.
- W2890002510 hasConceptScore W2890002510C121332964 @default.
- W2890002510 hasConceptScore W2890002510C153294291 @default.
- W2890002510 hasConceptScore W2890002510C154945302 @default.
- W2890002510 hasConceptScore W2890002510C15744967 @default.
- W2890002510 hasConceptScore W2890002510C169760540 @default.
- W2890002510 hasConceptScore W2890002510C204321447 @default.
- W2890002510 hasConceptScore W2890002510C2777211547 @default.
- W2890002510 hasConceptScore W2890002510C2777438025 @default.
- W2890002510 hasConceptScore W2890002510C28490314 @default.
- W2890002510 hasConceptScore W2890002510C2988773926 @default.
- W2890002510 hasConceptScore W2890002510C36951298 @default.
- W2890002510 hasConceptScore W2890002510C37736160 @default.
- W2890002510 hasConceptScore W2890002510C39890363 @default.
- W2890002510 hasConceptScore W2890002510C41008148 @default.
- W2890002510 hasLocation W28900025101 @default.
- W2890002510 hasLocation W28900025102 @default.
- W2890002510 hasLocation W28900025103 @default.
- W2890002510 hasLocation W28900025104 @default.
- W2890002510 hasLocation W28900025105 @default.
- W2890002510 hasLocation W28900025106 @default.
- W2890002510 hasOpenAccess W2890002510 @default.
- W2890002510 hasPrimaryLocation W28900025101 @default.
- W2890002510 hasRelatedWork W2888032422 @default.
- W2890002510 hasRelatedWork W2971552217 @default.
- W2890002510 hasRelatedWork W2972144487 @default.
- W2890002510 hasRelatedWork W2996316059 @default.
- W2890002510 hasRelatedWork W3005996785 @default.
- W2890002510 hasRelatedWork W3178813832 @default.
- W2890002510 hasRelatedWork W4226298148 @default.
- W2890002510 hasRelatedWork W4297411772 @default.
- W2890002510 hasRelatedWork W4377980832 @default.
- W2890002510 hasRelatedWork W4385421777 @default.
- W2890002510 isParatext "false" @default.
- W2890002510 isRetracted "false" @default.
- W2890002510 magId "2890002510" @default.
- W2890002510 workType "article" @default.