Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890103762> ?p ?o ?g. }
- W2890103762 endingPage "179" @default.
- W2890103762 startingPage "151" @default.
- W2890103762 abstract "Network intrusion is a growing threat with potentially severe impacts, which can be damaging in multiple ways to network infrastructures and digital/intellectual assets in the cyberspace. The approach most commonly employed to combat network intrusion is the development of attack detection systems via machine learning and data mining techniques. These systems can identify and disconnect malicious network traffic, thereby helping to protect networks. This chapter systematically reviews two groups of common intrusion detection systems using fuzzy logic and artificial neural networks, and evaluates them by utilizing the widely used KDD 99 benchmark dataset. Based on the findings, the key challenges and opportunities in addressing cyberattacks using artificial intelligence techniques are summarized and future work suggested." @default.
- W2890103762 created "2018-09-27" @default.
- W2890103762 creator A5000389309 @default.
- W2890103762 creator A5038258635 @default.
- W2890103762 creator A5039677093 @default.
- W2890103762 creator A5045440266 @default.
- W2890103762 creator A5047667818 @default.
- W2890103762 creator A5065079117 @default.
- W2890103762 date "2018-09-18" @default.
- W2890103762 modified "2023-10-01" @default.
- W2890103762 title "Machine Learning Algorithms for Network Intrusion Detection" @default.
- W2890103762 cites W1493971325 @default.
- W2890103762 cites W1496908738 @default.
- W2890103762 cites W1542488052 @default.
- W2890103762 cites W1570834090 @default.
- W2890103762 cites W1608549042 @default.
- W2890103762 cites W1884084180 @default.
- W2890103762 cites W1908122868 @default.
- W2890103762 cites W1963911016 @default.
- W2890103762 cites W1982496628 @default.
- W2890103762 cites W1985987493 @default.
- W2890103762 cites W1989352541 @default.
- W2890103762 cites W1989359075 @default.
- W2890103762 cites W1990999691 @default.
- W2890103762 cites W1995077566 @default.
- W2890103762 cites W1996881001 @default.
- W2890103762 cites W2001107211 @default.
- W2890103762 cites W2007087405 @default.
- W2890103762 cites W2013198395 @default.
- W2890103762 cites W2020651442 @default.
- W2890103762 cites W2038683228 @default.
- W2890103762 cites W2039377530 @default.
- W2890103762 cites W2050672458 @default.
- W2890103762 cites W2065311170 @default.
- W2890103762 cites W2074919225 @default.
- W2890103762 cites W2079325629 @default.
- W2890103762 cites W2079406686 @default.
- W2890103762 cites W2084496302 @default.
- W2890103762 cites W2086570643 @default.
- W2890103762 cites W2096393821 @default.
- W2890103762 cites W2099940443 @default.
- W2890103762 cites W2104524589 @default.
- W2890103762 cites W2119387367 @default.
- W2890103762 cites W2122217421 @default.
- W2890103762 cites W2122475393 @default.
- W2890103762 cites W2126120381 @default.
- W2890103762 cites W2128771953 @default.
- W2890103762 cites W2130915832 @default.
- W2890103762 cites W2133462743 @default.
- W2890103762 cites W2134138371 @default.
- W2890103762 cites W2134291670 @default.
- W2890103762 cites W2138710658 @default.
- W2890103762 cites W2142720090 @default.
- W2890103762 cites W2147067398 @default.
- W2890103762 cites W2156715830 @default.
- W2890103762 cites W2158407140 @default.
- W2890103762 cites W2162466345 @default.
- W2890103762 cites W2166593799 @default.
- W2890103762 cites W2168523997 @default.
- W2890103762 cites W2171366364 @default.
- W2890103762 cites W2209736539 @default.
- W2890103762 cites W2326324325 @default.
- W2890103762 cites W2342408547 @default.
- W2890103762 cites W2468072172 @default.
- W2890103762 cites W2507847988 @default.
- W2890103762 cites W2508561937 @default.
- W2890103762 cites W2508613954 @default.
- W2890103762 cites W2512144135 @default.
- W2890103762 cites W2512496029 @default.
- W2890103762 cites W2515118410 @default.
- W2890103762 cites W2528663298 @default.
- W2890103762 cites W2559341072 @default.
- W2890103762 cites W2589681188 @default.
- W2890103762 cites W2597441556 @default.
- W2890103762 cites W2748447594 @default.
- W2890103762 cites W2750004798 @default.
- W2890103762 cites W2753840377 @default.
- W2890103762 cites W2768881458 @default.
- W2890103762 cites W2773534535 @default.
- W2890103762 cites W2780698577 @default.
- W2890103762 cites W2787315578 @default.
- W2890103762 cites W2789828921 @default.
- W2890103762 cites W2792164665 @default.
- W2890103762 cites W2883435185 @default.
- W2890103762 cites W2883935747 @default.
- W2890103762 cites W2896385917 @default.
- W2890103762 cites W4234872946 @default.
- W2890103762 cites W433644524 @default.
- W2890103762 doi "https://doi.org/10.1007/978-3-319-98842-9_6" @default.
- W2890103762 hasPublicationYear "2018" @default.
- W2890103762 type Work @default.
- W2890103762 sameAs 2890103762 @default.
- W2890103762 citedByCount "20" @default.
- W2890103762 countsByYear W28901037622019 @default.
- W2890103762 countsByYear W28901037622020 @default.
- W2890103762 countsByYear W28901037622021 @default.
- W2890103762 countsByYear W28901037622022 @default.
- W2890103762 countsByYear W28901037622023 @default.