Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890107857> ?p ?o ?g. }
- W2890107857 abstract "Multi-exposure fusion (MEF) is a widely used approach to high dynamic range imaging. The selection of features for fusion weight calculation is important to the performance of MEF. In this paper, we investigate the effectiveness of convolutional neural network (CNN) features for MEF. Considering the fact that there are no ground-truth images in MEF to train an end-to-end CNN, we adopt the pre-trained networks in other tasks to extract the feature. Both the selection of network and the selection of convolution layer are studied. With the extracted CNN feature map, we compute the local visibility and consistency maps to determine the weight map for MEF. The proposed method works well for both static and dynamic scenes. It exhibits competitive quantitative measures, and presents perceptually pleasing MEF outputs with little halo effects." @default.
- W2890107857 created "2018-09-27" @default.
- W2890107857 creator A5016590465 @default.
- W2890107857 creator A5020029411 @default.
- W2890107857 date "2018-10-01" @default.
- W2890107857 modified "2023-10-14" @default.
- W2890107857 title "Multi-Exposure Fusion with CNN Features" @default.
- W2890107857 cites W1580436348 @default.
- W2890107857 cites W1974871520 @default.
- W2890107857 cites W1985711750 @default.
- W2890107857 cites W1995813543 @default.
- W2890107857 cites W1998393535 @default.
- W2890107857 cites W2035234709 @default.
- W2890107857 cites W2087366239 @default.
- W2890107857 cites W2130724993 @default.
- W2890107857 cites W2163932540 @default.
- W2890107857 cites W2242218935 @default.
- W2890107857 cites W2296478018 @default.
- W2890107857 cites W2508457857 @default.
- W2890107857 cites W2590560192 @default.
- W2890107857 cites W2607202125 @default.
- W2890107857 cites W2752849939 @default.
- W2890107857 cites W2781542913 @default.
- W2890107857 cites W2783573276 @default.
- W2890107857 cites W2963530785 @default.
- W2890107857 cites W828875492 @default.
- W2890107857 doi "https://doi.org/10.1109/icip.2018.8451689" @default.
- W2890107857 hasPublicationYear "2018" @default.
- W2890107857 type Work @default.
- W2890107857 sameAs 2890107857 @default.
- W2890107857 citedByCount "25" @default.
- W2890107857 countsByYear W28901078572019 @default.
- W2890107857 countsByYear W28901078572020 @default.
- W2890107857 countsByYear W28901078572021 @default.
- W2890107857 countsByYear W28901078572022 @default.
- W2890107857 countsByYear W28901078572023 @default.
- W2890107857 crossrefType "proceedings-article" @default.
- W2890107857 hasAuthorship W2890107857A5016590465 @default.
- W2890107857 hasAuthorship W2890107857A5020029411 @default.
- W2890107857 hasConcept C120665830 @default.
- W2890107857 hasConcept C121332964 @default.
- W2890107857 hasConcept C123403432 @default.
- W2890107857 hasConcept C127413603 @default.
- W2890107857 hasConcept C138885662 @default.
- W2890107857 hasConcept C146849305 @default.
- W2890107857 hasConcept C146978453 @default.
- W2890107857 hasConcept C148483581 @default.
- W2890107857 hasConcept C153180895 @default.
- W2890107857 hasConcept C154945302 @default.
- W2890107857 hasConcept C158525013 @default.
- W2890107857 hasConcept C204323151 @default.
- W2890107857 hasConcept C2776401178 @default.
- W2890107857 hasConcept C2776436953 @default.
- W2890107857 hasConcept C2780056265 @default.
- W2890107857 hasConcept C2781399445 @default.
- W2890107857 hasConcept C31972630 @default.
- W2890107857 hasConcept C41008148 @default.
- W2890107857 hasConcept C41895202 @default.
- W2890107857 hasConcept C45347329 @default.
- W2890107857 hasConcept C50644808 @default.
- W2890107857 hasConcept C52622490 @default.
- W2890107857 hasConcept C81363708 @default.
- W2890107857 hasConcept C81917197 @default.
- W2890107857 hasConcept C87133666 @default.
- W2890107857 hasConceptScore W2890107857C120665830 @default.
- W2890107857 hasConceptScore W2890107857C121332964 @default.
- W2890107857 hasConceptScore W2890107857C123403432 @default.
- W2890107857 hasConceptScore W2890107857C127413603 @default.
- W2890107857 hasConceptScore W2890107857C138885662 @default.
- W2890107857 hasConceptScore W2890107857C146849305 @default.
- W2890107857 hasConceptScore W2890107857C146978453 @default.
- W2890107857 hasConceptScore W2890107857C148483581 @default.
- W2890107857 hasConceptScore W2890107857C153180895 @default.
- W2890107857 hasConceptScore W2890107857C154945302 @default.
- W2890107857 hasConceptScore W2890107857C158525013 @default.
- W2890107857 hasConceptScore W2890107857C204323151 @default.
- W2890107857 hasConceptScore W2890107857C2776401178 @default.
- W2890107857 hasConceptScore W2890107857C2776436953 @default.
- W2890107857 hasConceptScore W2890107857C2780056265 @default.
- W2890107857 hasConceptScore W2890107857C2781399445 @default.
- W2890107857 hasConceptScore W2890107857C31972630 @default.
- W2890107857 hasConceptScore W2890107857C41008148 @default.
- W2890107857 hasConceptScore W2890107857C41895202 @default.
- W2890107857 hasConceptScore W2890107857C45347329 @default.
- W2890107857 hasConceptScore W2890107857C50644808 @default.
- W2890107857 hasConceptScore W2890107857C52622490 @default.
- W2890107857 hasConceptScore W2890107857C81363708 @default.
- W2890107857 hasConceptScore W2890107857C81917197 @default.
- W2890107857 hasConceptScore W2890107857C87133666 @default.
- W2890107857 hasLocation W28901078571 @default.
- W2890107857 hasOpenAccess W2890107857 @default.
- W2890107857 hasPrimaryLocation W28901078571 @default.
- W2890107857 hasRelatedWork W2059299633 @default.
- W2890107857 hasRelatedWork W2295021132 @default.
- W2890107857 hasRelatedWork W2546942002 @default.
- W2890107857 hasRelatedWork W2732542196 @default.
- W2890107857 hasRelatedWork W2760085659 @default.
- W2890107857 hasRelatedWork W2940977206 @default.
- W2890107857 hasRelatedWork W2995914718 @default.
- W2890107857 hasRelatedWork W3028115994 @default.