Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890109053> ?p ?o ?g. }
- W2890109053 abstract "Depth cues are vital in many challenging computer vision tasks. In this paper, we address the problem of dense depth prediction from a single RGB image. Compared with stereo depth estimation, sensing the depth of a scene from monocular images is much more difficult and ambiguous because the epipolar geometry constraints cannot be exploited. In addition, the value of the scale is often unknown in monocular depth prediction. To facilitate an accurate single-view depth prediction, we introduce dilated convolution to capture multi-scale contextual information and then present a deep convolutional neural network. To improve the robustness of the system, we estimate the uncertainty of noisy data by modelling such uncertainty in a new loss function. The experiment results show that the proposed approach outperforms the previous state-of-the-art methods in depth estimation tasks." @default.
- W2890109053 created "2018-09-27" @default.
- W2890109053 creator A5020459470 @default.
- W2890109053 creator A5047602732 @default.
- W2890109053 creator A5058269051 @default.
- W2890109053 creator A5080733133 @default.
- W2890109053 creator A5088784638 @default.
- W2890109053 date "2018-01-01" @default.
- W2890109053 modified "2023-09-22" @default.
- W2890109053 title "Depth Estimation from Monocular Images Using Dilated Convolution and Uncertainty Learning" @default.
- W2890109053 cites W125693051 @default.
- W2890109053 cites W1545195129 @default.
- W2890109053 cites W1903029394 @default.
- W2890109053 cites W1905829557 @default.
- W2890109053 cites W1930528368 @default.
- W2890109053 cites W1992178727 @default.
- W2890109053 cites W2083047701 @default.
- W2890109053 cites W2104974755 @default.
- W2890109053 cites W2117539524 @default.
- W2890109053 cites W2125416623 @default.
- W2890109053 cites W2132947399 @default.
- W2890109053 cites W2147800946 @default.
- W2890109053 cites W2156094778 @default.
- W2890109053 cites W2194775991 @default.
- W2890109053 cites W2300779272 @default.
- W2890109053 cites W2436453945 @default.
- W2890109053 cites W2520707372 @default.
- W2890109053 cites W2605938684 @default.
- W2890109053 cites W2963591054 @default.
- W2890109053 doi "https://doi.org/10.1007/978-3-030-00767-6_2" @default.
- W2890109053 hasPublicationYear "2018" @default.
- W2890109053 type Work @default.
- W2890109053 sameAs 2890109053 @default.
- W2890109053 citedByCount "0" @default.
- W2890109053 crossrefType "book-chapter" @default.
- W2890109053 hasAuthorship W2890109053A5020459470 @default.
- W2890109053 hasAuthorship W2890109053A5047602732 @default.
- W2890109053 hasAuthorship W2890109053A5058269051 @default.
- W2890109053 hasAuthorship W2890109053A5080733133 @default.
- W2890109053 hasAuthorship W2890109053A5088784638 @default.
- W2890109053 hasConcept C104317684 @default.
- W2890109053 hasConcept C108583219 @default.
- W2890109053 hasConcept C110384440 @default.
- W2890109053 hasConcept C115961682 @default.
- W2890109053 hasConcept C121332964 @default.
- W2890109053 hasConcept C141268832 @default.
- W2890109053 hasConcept C154945302 @default.
- W2890109053 hasConcept C185592680 @default.
- W2890109053 hasConcept C23379248 @default.
- W2890109053 hasConcept C2778755073 @default.
- W2890109053 hasConcept C31972630 @default.
- W2890109053 hasConcept C41008148 @default.
- W2890109053 hasConcept C45347329 @default.
- W2890109053 hasConcept C50644808 @default.
- W2890109053 hasConcept C55493867 @default.
- W2890109053 hasConcept C62520636 @default.
- W2890109053 hasConcept C63479239 @default.
- W2890109053 hasConcept C65909025 @default.
- W2890109053 hasConcept C81363708 @default.
- W2890109053 hasConcept C82990744 @default.
- W2890109053 hasConceptScore W2890109053C104317684 @default.
- W2890109053 hasConceptScore W2890109053C108583219 @default.
- W2890109053 hasConceptScore W2890109053C110384440 @default.
- W2890109053 hasConceptScore W2890109053C115961682 @default.
- W2890109053 hasConceptScore W2890109053C121332964 @default.
- W2890109053 hasConceptScore W2890109053C141268832 @default.
- W2890109053 hasConceptScore W2890109053C154945302 @default.
- W2890109053 hasConceptScore W2890109053C185592680 @default.
- W2890109053 hasConceptScore W2890109053C23379248 @default.
- W2890109053 hasConceptScore W2890109053C2778755073 @default.
- W2890109053 hasConceptScore W2890109053C31972630 @default.
- W2890109053 hasConceptScore W2890109053C41008148 @default.
- W2890109053 hasConceptScore W2890109053C45347329 @default.
- W2890109053 hasConceptScore W2890109053C50644808 @default.
- W2890109053 hasConceptScore W2890109053C55493867 @default.
- W2890109053 hasConceptScore W2890109053C62520636 @default.
- W2890109053 hasConceptScore W2890109053C63479239 @default.
- W2890109053 hasConceptScore W2890109053C65909025 @default.
- W2890109053 hasConceptScore W2890109053C81363708 @default.
- W2890109053 hasConceptScore W2890109053C82990744 @default.
- W2890109053 hasLocation W28901090531 @default.
- W2890109053 hasOpenAccess W2890109053 @default.
- W2890109053 hasPrimaryLocation W28901090531 @default.
- W2890109053 hasRelatedWork W2779522084 @default.
- W2890109053 hasRelatedWork W2907508336 @default.
- W2890109053 hasRelatedWork W2936412503 @default.
- W2890109053 hasRelatedWork W2940352183 @default.
- W2890109053 hasRelatedWork W2949085964 @default.
- W2890109053 hasRelatedWork W2964009301 @default.
- W2890109053 hasRelatedWork W2965673159 @default.
- W2890109053 hasRelatedWork W2972529580 @default.
- W2890109053 hasRelatedWork W2990989819 @default.
- W2890109053 hasRelatedWork W3005302484 @default.
- W2890109053 hasRelatedWork W3006581434 @default.
- W2890109053 hasRelatedWork W3009733913 @default.
- W2890109053 hasRelatedWork W3080712214 @default.
- W2890109053 hasRelatedWork W3087272931 @default.
- W2890109053 hasRelatedWork W3105650719 @default.
- W2890109053 hasRelatedWork W3112163773 @default.
- W2890109053 hasRelatedWork W3133598367 @default.