Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890113322> ?p ?o ?g. }
- W2890113322 abstract "The purposes of the algorithm presented in this paper are to select features with the highest average separability by using the random forest method to distinguish categories that are easy to distinguish and to select the most divisible features from the most difficult categories using the weighted entropy algorithm. The framework is composed of five parts:<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mo stretchy=false>(</mml:mo><mml:mn fontstyle=italic>1</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:math>random samples selection with<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mo stretchy=false>(</mml:mo><mml:mn fontstyle=italic>2</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:math>probabilistic output initial random forest classification processing based on the number of votes;<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M3><mml:mo stretchy=false>(</mml:mo><mml:mn fontstyle=italic>3</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:math>semisupervised classification, which is an improvement of the supervision classification of random forest based on the weighted entropy algorithm;<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M4><mml:mo stretchy=false>(</mml:mo><mml:mn fontstyle=italic>4</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:math>precision evaluation; and<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M5><mml:mo stretchy=false>(</mml:mo><mml:mn fontstyle=italic>5</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:math>a comparison with the traditional minimum distance classification and the support vector machine (SVM) classification. In order to verify the universality of the proposed algorithm, two different data sources are tested, which are AVIRIS and Hyperion data. The results show that the overall classification accuracy of AVIRIS data is up to 87.36%, the kappa coefficient is up to 0.8591, and the classification time is 22.72s. Hyperion data is up to 99.17%, the kappa coefficient is up to 0.9904, and the classification time is 8.16s. Classification accuracy is obviously improved and efficiency is greatly improved, compared with the minimum distance and the SVM classifier and the CART classifier." @default.
- W2890113322 created "2018-09-27" @default.
- W2890113322 creator A5002169519 @default.
- W2890113322 creator A5035339773 @default.
- W2890113322 creator A5037546060 @default.
- W2890113322 creator A5041993637 @default.
- W2890113322 creator A5077847638 @default.
- W2890113322 date "2018-09-04" @default.
- W2890113322 modified "2023-10-17" @default.
- W2890113322 title "A New Semisupervised-Entropy Framework of Hyperspectral Image Classification Based on Random Forest" @default.
- W2890113322 cites W1471436312 @default.
- W2890113322 cites W1599493695 @default.
- W2890113322 cites W1967391020 @default.
- W2890113322 cites W1977066218 @default.
- W2890113322 cites W1980252875 @default.
- W2890113322 cites W1982442435 @default.
- W2890113322 cites W1982872386 @default.
- W2890113322 cites W1989919782 @default.
- W2890113322 cites W1997478538 @default.
- W2890113322 cites W2003139437 @default.
- W2890113322 cites W2009621568 @default.
- W2890113322 cites W2014555541 @default.
- W2890113322 cites W2021820882 @default.
- W2890113322 cites W2033275656 @default.
- W2890113322 cites W2037798659 @default.
- W2890113322 cites W2050919167 @default.
- W2890113322 cites W2051378084 @default.
- W2890113322 cites W2057208709 @default.
- W2890113322 cites W2065529590 @default.
- W2890113322 cites W2073405308 @default.
- W2890113322 cites W2073786624 @default.
- W2890113322 cites W2081809992 @default.
- W2890113322 cites W2089181682 @default.
- W2890113322 cites W2094128702 @default.
- W2890113322 cites W2101711129 @default.
- W2890113322 cites W2102160343 @default.
- W2890113322 cites W2108195330 @default.
- W2890113322 cites W2123427204 @default.
- W2890113322 cites W2129891925 @default.
- W2890113322 cites W2130674596 @default.
- W2890113322 cites W2131077867 @default.
- W2890113322 cites W2132424470 @default.
- W2890113322 cites W2134691826 @default.
- W2890113322 cites W2139564957 @default.
- W2890113322 cites W2140881839 @default.
- W2890113322 cites W2142629552 @default.
- W2890113322 cites W2145862305 @default.
- W2890113322 cites W2150506149 @default.
- W2890113322 cites W2168341506 @default.
- W2890113322 cites W2170556184 @default.
- W2890113322 cites W2229387242 @default.
- W2890113322 cites W2261059368 @default.
- W2890113322 cites W2267727210 @default.
- W2890113322 cites W2462424115 @default.
- W2890113322 cites W2517850251 @default.
- W2890113322 cites W2531168480 @default.
- W2890113322 cites W2562706821 @default.
- W2890113322 cites W2564115333 @default.
- W2890113322 cites W2598258070 @default.
- W2890113322 cites W2607290190 @default.
- W2890113322 cites W265519738 @default.
- W2890113322 cites W2739176664 @default.
- W2890113322 cites W2751186474 @default.
- W2890113322 cites W2765777852 @default.
- W2890113322 cites W2766402906 @default.
- W2890113322 cites W2781900029 @default.
- W2890113322 cites W2782364997 @default.
- W2890113322 cites W299735007 @default.
- W2890113322 cites W2100921418 @default.
- W2890113322 doi "https://doi.org/10.1155/2018/3521720" @default.
- W2890113322 hasPublicationYear "2018" @default.
- W2890113322 type Work @default.
- W2890113322 sameAs 2890113322 @default.
- W2890113322 citedByCount "1" @default.
- W2890113322 countsByYear W28901133222020 @default.
- W2890113322 crossrefType "journal-article" @default.
- W2890113322 hasAuthorship W2890113322A5002169519 @default.
- W2890113322 hasAuthorship W2890113322A5035339773 @default.
- W2890113322 hasAuthorship W2890113322A5037546060 @default.
- W2890113322 hasAuthorship W2890113322A5041993637 @default.
- W2890113322 hasAuthorship W2890113322A5077847638 @default.
- W2890113322 hasBestOaLocation W28901133221 @default.
- W2890113322 hasConcept C11413529 @default.
- W2890113322 hasConcept C154945302 @default.
- W2890113322 hasConcept C169258074 @default.
- W2890113322 hasConcept C41008148 @default.
- W2890113322 hasConceptScore W2890113322C11413529 @default.
- W2890113322 hasConceptScore W2890113322C154945302 @default.
- W2890113322 hasConceptScore W2890113322C169258074 @default.
- W2890113322 hasConceptScore W2890113322C41008148 @default.
- W2890113322 hasFunder F4320323845 @default.
- W2890113322 hasLocation W28901133221 @default.
- W2890113322 hasLocation W28901133222 @default.
- W2890113322 hasOpenAccess W2890113322 @default.
- W2890113322 hasPrimaryLocation W28901133221 @default.
- W2890113322 hasRelatedWork W1956433900 @default.
- W2890113322 hasRelatedWork W1990267341 @default.
- W2890113322 hasRelatedWork W2017809836 @default.
- W2890113322 hasRelatedWork W2293477903 @default.
- W2890113322 hasRelatedWork W2422064242 @default.