Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890114852> ?p ?o ?g. }
- W2890114852 abstract "With the arrival of the big data era, more and more data are becoming readily available in various real-world applications and those data are usually highly heterogeneous. Taking computational medicine as an example, we have both Electronic Health Records (EHR) and medical images for each patient. For complicated diseases such as Parkinson's and Alzheimer's, both EHR and neuroimaging information are very important for disease understanding because they contain complementary aspects of the disease. However, EHR and neuroimage are completely different. So far the existing research has been mainly focusing on one of them. In this paper, we proposed a framework, Memory-Based Graph Convolution Network (MemGCN), to perform integrative analysis with such multi-modal data. Specifically, GCN is used to extract useful information from the patients' neuroimages. The information contained in the patient EHRs before the acquisition of each brain image is captured by a memory network because of its sequential nature. The information contained in each brain image is combined with the information read out from the memory network to infer the disease state at the image acquisition timestamp. To further enhance the analytical power of MemGCN, we also designed a multi-hop strategy that allows multiple reading and updating on the memory can be performed at each iteration. We conduct experiments using the patient data from the Parkinson's Progression Markers Initiative (PPMI) with the task of classification of Parkinson's Disease (PD) cases versus controls. We demonstrate that superior classification performance can be achieved with our proposed framework, comparing with existing approaches involving a single type of data." @default.
- W2890114852 created "2018-09-27" @default.
- W2890114852 creator A5004926429 @default.
- W2890114852 creator A5052842809 @default.
- W2890114852 creator A5086529957 @default.
- W2890114852 date "2018-09-17" @default.
- W2890114852 modified "2023-10-17" @default.
- W2890114852 title "Integrative Analysis of Patient Health Records and Neuroimages via Memory-based Graph Convolutional Network" @default.
- W2890114852 cites W1522301498 @default.
- W2890114852 cites W1550018017 @default.
- W2890114852 cites W1578099820 @default.
- W2890114852 cites W1793121960 @default.
- W2890114852 cites W1843891098 @default.
- W2890114852 cites W1969116741 @default.
- W2890114852 cites W1970928383 @default.
- W2890114852 cites W1976801265 @default.
- W2890114852 cites W1988494453 @default.
- W2890114852 cites W1996796871 @default.
- W2890114852 cites W1998249118 @default.
- W2890114852 cites W2003220467 @default.
- W2890114852 cites W2030498706 @default.
- W2890114852 cites W2043195060 @default.
- W2890114852 cites W2060427373 @default.
- W2890114852 cites W2071881327 @default.
- W2890114852 cites W2072128103 @default.
- W2890114852 cites W2097998348 @default.
- W2890114852 cites W2124996938 @default.
- W2890114852 cites W2140978740 @default.
- W2890114852 cites W2142900310 @default.
- W2890114852 cites W2145132952 @default.
- W2890114852 cites W2165758561 @default.
- W2890114852 cites W2404901863 @default.
- W2890114852 cites W2409591106 @default.
- W2890114852 cites W2511950764 @default.
- W2890114852 cites W2519887557 @default.
- W2890114852 cites W2526511911 @default.
- W2890114852 cites W2557738935 @default.
- W2890114852 cites W2558460151 @default.
- W2890114852 cites W2558748708 @default.
- W2890114852 cites W2581082771 @default.
- W2890114852 cites W2591711955 @default.
- W2890114852 cites W2592929672 @default.
- W2890114852 cites W2623881437 @default.
- W2890114852 cites W2731010577 @default.
- W2890114852 cites W2741907166 @default.
- W2890114852 cites W2799690436 @default.
- W2890114852 cites W2803300321 @default.
- W2890114852 cites W2919115771 @default.
- W2890114852 cites W2950527759 @default.
- W2890114852 cites W2963546833 @default.
- W2890114852 cites W2964265128 @default.
- W2890114852 cites W2964308564 @default.
- W2890114852 cites W2964311892 @default.
- W2890114852 cites W2964321699 @default.
- W2890114852 cites W3037881859 @default.
- W2890114852 cites W3091905774 @default.
- W2890114852 cites W3098949126 @default.
- W2890114852 cites W580074167 @default.
- W2890114852 cites W581674602 @default.
- W2890114852 cites W637153065 @default.
- W2890114852 doi "https://doi.org/10.48550/arxiv.1809.06018" @default.
- W2890114852 hasPublicationYear "2018" @default.
- W2890114852 type Work @default.
- W2890114852 sameAs 2890114852 @default.
- W2890114852 citedByCount "1" @default.
- W2890114852 countsByYear W28901148522019 @default.
- W2890114852 crossrefType "posted-content" @default.
- W2890114852 hasAuthorship W2890114852A5004926429 @default.
- W2890114852 hasAuthorship W2890114852A5052842809 @default.
- W2890114852 hasAuthorship W2890114852A5086529957 @default.
- W2890114852 hasBestOaLocation W28901148521 @default.
- W2890114852 hasConcept C119857082 @default.
- W2890114852 hasConcept C132525143 @default.
- W2890114852 hasConcept C154945302 @default.
- W2890114852 hasConcept C15744967 @default.
- W2890114852 hasConcept C169760540 @default.
- W2890114852 hasConcept C23123220 @default.
- W2890114852 hasConcept C41008148 @default.
- W2890114852 hasConcept C58693492 @default.
- W2890114852 hasConcept C80444323 @default.
- W2890114852 hasConceptScore W2890114852C119857082 @default.
- W2890114852 hasConceptScore W2890114852C132525143 @default.
- W2890114852 hasConceptScore W2890114852C154945302 @default.
- W2890114852 hasConceptScore W2890114852C15744967 @default.
- W2890114852 hasConceptScore W2890114852C169760540 @default.
- W2890114852 hasConceptScore W2890114852C23123220 @default.
- W2890114852 hasConceptScore W2890114852C41008148 @default.
- W2890114852 hasConceptScore W2890114852C58693492 @default.
- W2890114852 hasConceptScore W2890114852C80444323 @default.
- W2890114852 hasLocation W28901148521 @default.
- W2890114852 hasOpenAccess W2890114852 @default.
- W2890114852 hasPrimaryLocation W28901148521 @default.
- W2890114852 hasRelatedWork W2357241418 @default.
- W2890114852 hasRelatedWork W2961085424 @default.
- W2890114852 hasRelatedWork W3002526821 @default.
- W2890114852 hasRelatedWork W3046775127 @default.
- W2890114852 hasRelatedWork W3170094116 @default.
- W2890114852 hasRelatedWork W4285260836 @default.
- W2890114852 hasRelatedWork W4286629047 @default.
- W2890114852 hasRelatedWork W4306321456 @default.