Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890122322> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2890122322 abstract "Electroencephalogram (EEG) is a multi-dimensional time-series brain signal that is highly information packed. While an EEG has high potential to serve in medicine (e.g. disease diagnosis, prognosis, pre-disease risk identification), psycho-physiology (e.g. mood classification, stress monitoring, alertness monitoring, sleep stage monitoring), brain-computer interface application (e.g. thought typing, prosthesis control), and many other areas, the classical design of EEG feature extraction algorithms and EEG classifiers is time-consuming and challenging to fully tap into the vast data embedded in the EEG. Deep learning (or deep neural network) which enables higher hierarchical representation of complex data has been strongly suggested by a wide range of recent research that these deep architectures of artificial neural network generally outperform the classical EEG feature extraction algorithms or classical EEG classifiers. In this project, deep neural network architectures have been constructed to perform binary classification on an EEG dataset that was shown by traditional EEG feature extraction methods to have no significant difference between its two data pools (resting EEG recorded before and recorded after listening to music). The convolutional neural network (CNN) model constructed in this project has achieved a validation accuracy of 75±1% using the same EEG dataset. Using the top performing CNN architectures, short duration of relaxing music listening is found to affect the EEG signals generated by the frontal lobe more than the other lobes of the brain; and also to affect the EEG generated by the left cerebral hemisphere more than the right hemisphere." @default.
- W2890122322 created "2018-09-27" @default.
- W2890122322 creator A5067721364 @default.
- W2890122322 date "2018-05-03" @default.
- W2890122322 modified "2023-09-24" @default.
- W2890122322 title "Deep learning for EEG data analysis" @default.
- W2890122322 hasPublicationYear "2018" @default.
- W2890122322 type Work @default.
- W2890122322 sameAs 2890122322 @default.
- W2890122322 citedByCount "0" @default.
- W2890122322 crossrefType "dissertation" @default.
- W2890122322 hasAuthorship W2890122322A5067721364 @default.
- W2890122322 hasConcept C108583219 @default.
- W2890122322 hasConcept C153180895 @default.
- W2890122322 hasConcept C154945302 @default.
- W2890122322 hasConcept C15744967 @default.
- W2890122322 hasConcept C169760540 @default.
- W2890122322 hasConcept C173201364 @default.
- W2890122322 hasConcept C28490314 @default.
- W2890122322 hasConcept C41008148 @default.
- W2890122322 hasConcept C50644808 @default.
- W2890122322 hasConcept C522805319 @default.
- W2890122322 hasConcept C52622490 @default.
- W2890122322 hasConcept C81363708 @default.
- W2890122322 hasConceptScore W2890122322C108583219 @default.
- W2890122322 hasConceptScore W2890122322C153180895 @default.
- W2890122322 hasConceptScore W2890122322C154945302 @default.
- W2890122322 hasConceptScore W2890122322C15744967 @default.
- W2890122322 hasConceptScore W2890122322C169760540 @default.
- W2890122322 hasConceptScore W2890122322C173201364 @default.
- W2890122322 hasConceptScore W2890122322C28490314 @default.
- W2890122322 hasConceptScore W2890122322C41008148 @default.
- W2890122322 hasConceptScore W2890122322C50644808 @default.
- W2890122322 hasConceptScore W2890122322C522805319 @default.
- W2890122322 hasConceptScore W2890122322C52622490 @default.
- W2890122322 hasConceptScore W2890122322C81363708 @default.
- W2890122322 hasLocation W28901223221 @default.
- W2890122322 hasOpenAccess W2890122322 @default.
- W2890122322 hasPrimaryLocation W28901223221 @default.
- W2890122322 hasRelatedWork W2042372487 @default.
- W2890122322 hasRelatedWork W2079434556 @default.
- W2890122322 hasRelatedWork W2750382711 @default.
- W2890122322 hasRelatedWork W2900992113 @default.
- W2890122322 hasRelatedWork W2947343305 @default.
- W2890122322 hasRelatedWork W2955367213 @default.
- W2890122322 hasRelatedWork W2962932094 @default.
- W2890122322 hasRelatedWork W2967645808 @default.
- W2890122322 hasRelatedWork W2983980224 @default.
- W2890122322 hasRelatedWork W3006349805 @default.
- W2890122322 hasRelatedWork W3008290004 @default.
- W2890122322 hasRelatedWork W3048034241 @default.
- W2890122322 hasRelatedWork W3083905347 @default.
- W2890122322 hasRelatedWork W3093671115 @default.
- W2890122322 hasRelatedWork W3094399329 @default.
- W2890122322 hasRelatedWork W3169764988 @default.
- W2890122322 hasRelatedWork W3172631821 @default.
- W2890122322 hasRelatedWork W3205288591 @default.
- W2890122322 hasRelatedWork W3206646847 @default.
- W2890122322 hasRelatedWork W3207516633 @default.
- W2890122322 isParatext "false" @default.
- W2890122322 isRetracted "false" @default.
- W2890122322 magId "2890122322" @default.
- W2890122322 workType "dissertation" @default.