Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890124632> ?p ?o ?g. }
- W2890124632 endingPage "168" @default.
- W2890124632 startingPage "153" @default.
- W2890124632 abstract "We compare the performance of popular covariance forecasting models in the context of a portfolio of major European equity indices. We find that models based on high-frequency data offer a clear advantage in terms of statistical accuracy. They also yield more theoretically consistent predictions from an empirical asset pricing perspective, and, lead to superior out-of-sample portfolio performance. Overall, a parsimonious Vector Heterogeneous Autoregressive (VHAR) model that involves lagged daily, weekly and monthly realised covariances achieves the best performance out of the competing models. A promising new simple hybrid covariance estimator is developed that exploits option-implied information and high-frequency data while adjusting for the volatility riskpremium. Relative model performance does not change during the global financial crisis, or, if a different forecast horizon, or, intraday sampling frequency is employed. Finally, our evidence remains robust when we consider an alternative sample of U.S. stocks." @default.
- W2890124632 created "2018-09-27" @default.
- W2890124632 creator A5016962409 @default.
- W2890124632 creator A5040759977 @default.
- W2890124632 creator A5049032926 @default.
- W2890124632 creator A5057531389 @default.
- W2890124632 date "2018-11-01" @default.
- W2890124632 modified "2023-10-06" @default.
- W2890124632 title "Covariance forecasting in equity markets" @default.
- W2890124632 cites W1581492247 @default.
- W2890124632 cites W1727659491 @default.
- W2890124632 cites W1963787328 @default.
- W2890124632 cites W1977480757 @default.
- W2890124632 cites W1989729764 @default.
- W2890124632 cites W1992893498 @default.
- W2890124632 cites W1993066538 @default.
- W2890124632 cites W2005432509 @default.
- W2890124632 cites W2018090882 @default.
- W2890124632 cites W2018364810 @default.
- W2890124632 cites W2021614726 @default.
- W2890124632 cites W2041402087 @default.
- W2890124632 cites W2053416684 @default.
- W2890124632 cites W2061160212 @default.
- W2890124632 cites W2063593194 @default.
- W2890124632 cites W2066815740 @default.
- W2890124632 cites W2084931349 @default.
- W2890124632 cites W2112088236 @default.
- W2890124632 cites W2113987286 @default.
- W2890124632 cites W2125536334 @default.
- W2890124632 cites W2127000676 @default.
- W2890124632 cites W2134807435 @default.
- W2890124632 cites W2146550845 @default.
- W2890124632 cites W2155804346 @default.
- W2890124632 cites W2155923387 @default.
- W2890124632 cites W2159879678 @default.
- W2890124632 cites W2160606523 @default.
- W2890124632 cites W2161605596 @default.
- W2890124632 cites W2612030650 @default.
- W2890124632 cites W2728863691 @default.
- W2890124632 cites W3021318637 @default.
- W2890124632 cites W3022085142 @default.
- W2890124632 cites W3121364726 @default.
- W2890124632 cites W3121513733 @default.
- W2890124632 cites W3121661702 @default.
- W2890124632 cites W3121729798 @default.
- W2890124632 cites W3121757396 @default.
- W2890124632 cites W3121766225 @default.
- W2890124632 cites W3122091423 @default.
- W2890124632 cites W3122555292 @default.
- W2890124632 cites W3122827830 @default.
- W2890124632 cites W3123007700 @default.
- W2890124632 cites W3123164798 @default.
- W2890124632 cites W3123351111 @default.
- W2890124632 cites W3123448183 @default.
- W2890124632 cites W3123508833 @default.
- W2890124632 cites W3123766390 @default.
- W2890124632 cites W3123965213 @default.
- W2890124632 cites W3125239845 @default.
- W2890124632 cites W3125396854 @default.
- W2890124632 cites W3125436869 @default.
- W2890124632 cites W3125961143 @default.
- W2890124632 cites W566863459 @default.
- W2890124632 doi "https://doi.org/10.1016/j.jbankfin.2018.08.013" @default.
- W2890124632 hasPublicationYear "2018" @default.
- W2890124632 type Work @default.
- W2890124632 sameAs 2890124632 @default.
- W2890124632 citedByCount "9" @default.
- W2890124632 countsByYear W28901246322019 @default.
- W2890124632 countsByYear W28901246322020 @default.
- W2890124632 countsByYear W28901246322021 @default.
- W2890124632 countsByYear W28901246322023 @default.
- W2890124632 crossrefType "journal-article" @default.
- W2890124632 hasAuthorship W2890124632A5016962409 @default.
- W2890124632 hasAuthorship W2890124632A5040759977 @default.
- W2890124632 hasAuthorship W2890124632A5049032926 @default.
- W2890124632 hasAuthorship W2890124632A5057531389 @default.
- W2890124632 hasBestOaLocation W28901246322 @default.
- W2890124632 hasConcept C105795698 @default.
- W2890124632 hasConcept C106159729 @default.
- W2890124632 hasConcept C149782125 @default.
- W2890124632 hasConcept C151730666 @default.
- W2890124632 hasConcept C159877910 @default.
- W2890124632 hasConcept C162324750 @default.
- W2890124632 hasConcept C178650346 @default.
- W2890124632 hasConcept C185429906 @default.
- W2890124632 hasConcept C202655437 @default.
- W2890124632 hasConcept C2779343474 @default.
- W2890124632 hasConcept C2780821815 @default.
- W2890124632 hasConcept C33923547 @default.
- W2890124632 hasConcept C60092789 @default.
- W2890124632 hasConcept C86803240 @default.
- W2890124632 hasConcept C91602232 @default.
- W2890124632 hasConceptScore W2890124632C105795698 @default.
- W2890124632 hasConceptScore W2890124632C106159729 @default.
- W2890124632 hasConceptScore W2890124632C149782125 @default.
- W2890124632 hasConceptScore W2890124632C151730666 @default.
- W2890124632 hasConceptScore W2890124632C159877910 @default.
- W2890124632 hasConceptScore W2890124632C162324750 @default.