Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890127982> ?p ?o ?g. }
- W2890127982 endingPage "652" @default.
- W2890127982 startingPage "643" @default.
- W2890127982 abstract "The Ganga River, the longest river in India, is stressed by extreme anthropogenic activity and climate change, particularly in the Varanasi region. Anticipated climate changes and an expanding populace are expected to further impede the efficient use of water. In this study, hydrological modeling was applied to Soil and Water Assessment Tool (SWAT) modeling in the Ganga catchment, over a region of 15 621.612 km2 in the southern part of Uttar Pradesh. The primary goals of this study are: ① To test the execution and applicability of the SWAT model in anticipating runoff and sediment yield; and ② to compare and determine the best calibration algorithm among three popular algorithms—sequential uncertainty fitting version 2 (SUFI-2), the generalized likelihood uncertainty estimation (GLUE), and parallel solution (ParaSol). The input data used in the SWAT were the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), Landsat-8 satellite imagery, soil data, and daily meteorological data. The watershed of the study area was delineated into 46 sub-watersheds, and a land use/land cover (LULC) map and soil map were used to create hydrological response units (HRUs). Models utilizing SUFI-2, GLUE, and ParaSol methods were constructed, and these algorithms were compared based on five categories: their objective functions, the concepts used, their performances, the values of P-factors, and the values of R-factors. As a result, it was observed that SUFI-2 is a better performer than the other two algorithms for use in calibrating Indian watersheds, as this method requires fewer runs for a computational model and yields the best results among the three algorithms. ParaSol is the worst performer among the three algorithms. After calibrating using SUFI-2, five parameters including the effective channel hydraulic conductivity (CH_K2), the universal soil-loss equation (USLE) support parameter (USLE_P), Manning’s n value for the main channel (CH_N2), the surface runoff lag time (SURLAG), and the available water capacity of the soil layer (SOL_AWC) were observed to be the most sensitive parameters for modeling the present watershed. It was also found that the maximum runoff occurred in sub-watershed number 40 (SW#40), while the maximum sediment yield was 50 t·a−1 for SW#36, which comprised barren land. The average evapotranspiration for the basin was 411.55 mm·a−1. The calibrated model can be utilized in future to facilitate investigation of the impacts of LULC, climate change, and soil erosion." @default.
- W2890127982 created "2018-09-27" @default.
- W2890127982 creator A5001030868 @default.
- W2890127982 creator A5022466948 @default.
- W2890127982 creator A5085266349 @default.
- W2890127982 date "2018-10-01" @default.
- W2890127982 modified "2023-10-16" @default.
- W2890127982 title "A Comparison of SWAT Model Calibration Techniques for Hydrological Modeling in the Ganga River Watershed" @default.
- W2890127982 cites W1153858119 @default.
- W2890127982 cites W1786630126 @default.
- W2890127982 cites W1967999105 @default.
- W2890127982 cites W1978687797 @default.
- W2890127982 cites W1982685093 @default.
- W2890127982 cites W1995170217 @default.
- W2890127982 cites W2010355853 @default.
- W2890127982 cites W2019999922 @default.
- W2890127982 cites W2038693072 @default.
- W2890127982 cites W2040515655 @default.
- W2890127982 cites W2059646894 @default.
- W2890127982 cites W2065205418 @default.
- W2890127982 cites W2068420907 @default.
- W2890127982 cites W2075581597 @default.
- W2890127982 cites W2168388823 @default.
- W2890127982 cites W2230911711 @default.
- W2890127982 cites W2510574970 @default.
- W2890127982 cites W2515322126 @default.
- W2890127982 cites W2554575237 @default.
- W2890127982 cites W2556314106 @default.
- W2890127982 cites W2609394187 @default.
- W2890127982 cites W2613928134 @default.
- W2890127982 doi "https://doi.org/10.1016/j.eng.2018.08.012" @default.
- W2890127982 hasPublicationYear "2018" @default.
- W2890127982 type Work @default.
- W2890127982 sameAs 2890127982 @default.
- W2890127982 citedByCount "47" @default.
- W2890127982 countsByYear W28901279822019 @default.
- W2890127982 countsByYear W28901279822020 @default.
- W2890127982 countsByYear W28901279822021 @default.
- W2890127982 countsByYear W28901279822022 @default.
- W2890127982 countsByYear W28901279822023 @default.
- W2890127982 crossrefType "journal-article" @default.
- W2890127982 hasAuthorship W2890127982A5001030868 @default.
- W2890127982 hasAuthorship W2890127982A5022466948 @default.
- W2890127982 hasAuthorship W2890127982A5085266349 @default.
- W2890127982 hasBestOaLocation W28901279821 @default.
- W2890127982 hasConcept C119857082 @default.
- W2890127982 hasConcept C126645576 @default.
- W2890127982 hasConcept C127313418 @default.
- W2890127982 hasConcept C150547873 @default.
- W2890127982 hasConcept C159390177 @default.
- W2890127982 hasConcept C159750122 @default.
- W2890127982 hasConcept C159985019 @default.
- W2890127982 hasConcept C181843262 @default.
- W2890127982 hasConcept C184149073 @default.
- W2890127982 hasConcept C187320778 @default.
- W2890127982 hasConcept C18903297 @default.
- W2890127982 hasConcept C192562407 @default.
- W2890127982 hasConcept C205649164 @default.
- W2890127982 hasConcept C2524010 @default.
- W2890127982 hasConcept C2779937294 @default.
- W2890127982 hasConcept C2780623283 @default.
- W2890127982 hasConcept C2780648208 @default.
- W2890127982 hasConcept C2780852570 @default.
- W2890127982 hasConcept C33923547 @default.
- W2890127982 hasConcept C37054046 @default.
- W2890127982 hasConcept C39432304 @default.
- W2890127982 hasConcept C41008148 @default.
- W2890127982 hasConcept C4792198 @default.
- W2890127982 hasConcept C50477045 @default.
- W2890127982 hasConcept C53739315 @default.
- W2890127982 hasConcept C58640448 @default.
- W2890127982 hasConcept C62649853 @default.
- W2890127982 hasConcept C71864017 @default.
- W2890127982 hasConcept C76886044 @default.
- W2890127982 hasConcept C86803240 @default.
- W2890127982 hasConceptScore W2890127982C119857082 @default.
- W2890127982 hasConceptScore W2890127982C126645576 @default.
- W2890127982 hasConceptScore W2890127982C127313418 @default.
- W2890127982 hasConceptScore W2890127982C150547873 @default.
- W2890127982 hasConceptScore W2890127982C159390177 @default.
- W2890127982 hasConceptScore W2890127982C159750122 @default.
- W2890127982 hasConceptScore W2890127982C159985019 @default.
- W2890127982 hasConceptScore W2890127982C181843262 @default.
- W2890127982 hasConceptScore W2890127982C184149073 @default.
- W2890127982 hasConceptScore W2890127982C187320778 @default.
- W2890127982 hasConceptScore W2890127982C18903297 @default.
- W2890127982 hasConceptScore W2890127982C192562407 @default.
- W2890127982 hasConceptScore W2890127982C205649164 @default.
- W2890127982 hasConceptScore W2890127982C2524010 @default.
- W2890127982 hasConceptScore W2890127982C2779937294 @default.
- W2890127982 hasConceptScore W2890127982C2780623283 @default.
- W2890127982 hasConceptScore W2890127982C2780648208 @default.
- W2890127982 hasConceptScore W2890127982C2780852570 @default.
- W2890127982 hasConceptScore W2890127982C33923547 @default.
- W2890127982 hasConceptScore W2890127982C37054046 @default.
- W2890127982 hasConceptScore W2890127982C39432304 @default.
- W2890127982 hasConceptScore W2890127982C41008148 @default.
- W2890127982 hasConceptScore W2890127982C4792198 @default.