Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890129614> ?p ?o ?g. }
- W2890129614 endingPage "96" @default.
- W2890129614 startingPage "82" @default.
- W2890129614 abstract "The availability of large annotated datasets and affordable computation power have led to impressive improvements in the performance of convolutional neural networks (CNNs) on various face analysis tasks. In this paper, we describe a deep learning pipeline for unconstrained face identification and verification which achieves state-of-the-art performance on several benchmark datasets. We provide the design details of the various modules involved in automatic face recognition: face detection, landmark localization and alignment, and face identification/verification. We propose a novel face detector, deep pyramid single shot face detector (DPSSD), which is fast and detects faces with large scale variations (especially tiny faces). Additionally, we propose a new loss function, called crystal loss, for the tasks of face verification and identification. Crystal loss restricts the feature descriptors to lie on a hypersphere of a fixed radius, thus minimizing the angular distance between positive subject pairs and maximizing the angular distance between negative subject pairs. We provide evaluation results of the proposed face detector on challenging unconstrained face detection datasets. Then, we present experimental results for end-to-end face verification and identification on IARPA Janus Benchmarks A, B, and C (IJB-A, IJB-B, IJB-C), and the Janus Challenge Set 5 (CS5)." @default.
- W2890129614 created "2018-09-27" @default.
- W2890129614 creator A5009101133 @default.
- W2890129614 creator A5010007692 @default.
- W2890129614 creator A5023195442 @default.
- W2890129614 creator A5027702007 @default.
- W2890129614 creator A5033755969 @default.
- W2890129614 creator A5054079545 @default.
- W2890129614 creator A5058194061 @default.
- W2890129614 creator A5067640069 @default.
- W2890129614 creator A5072326245 @default.
- W2890129614 creator A5083725203 @default.
- W2890129614 date "2019-04-01" @default.
- W2890129614 modified "2023-10-18" @default.
- W2890129614 title "A Fast and Accurate System for Face Detection, Identification, and Verification" @default.
- W2890129614 cites W1536775035 @default.
- W2890129614 cites W1682276745 @default.
- W2890129614 cites W1895390915 @default.
- W2890129614 cites W1931980004 @default.
- W2890129614 cites W1934410531 @default.
- W2890129614 cites W1949778830 @default.
- W2890129614 cites W1950843348 @default.
- W2890129614 cites W1970456555 @default.
- W2890129614 cites W1976948919 @default.
- W2890129614 cites W2019464758 @default.
- W2890129614 cites W2031489346 @default.
- W2890129614 cites W2034025266 @default.
- W2890129614 cites W2076434944 @default.
- W2890129614 cites W2088049833 @default.
- W2890129614 cites W2097117768 @default.
- W2890129614 cites W2102605133 @default.
- W2890129614 cites W2145287260 @default.
- W2890129614 cites W2155893237 @default.
- W2890129614 cites W2157364932 @default.
- W2890129614 cites W2160532515 @default.
- W2890129614 cites W2194775991 @default.
- W2890129614 cites W2209882149 @default.
- W2890129614 cites W2307523691 @default.
- W2890129614 cites W2325939864 @default.
- W2890129614 cites W2335787378 @default.
- W2890129614 cites W2431335693 @default.
- W2890129614 cites W2432917172 @default.
- W2890129614 cites W2462523589 @default.
- W2890129614 cites W2465108587 @default.
- W2890129614 cites W2474575620 @default.
- W2890129614 cites W2474608001 @default.
- W2890129614 cites W2495387757 @default.
- W2890129614 cites W2515770085 @default.
- W2890129614 cites W2548780814 @default.
- W2890129614 cites W2578555672 @default.
- W2890129614 cites W2579152745 @default.
- W2890129614 cites W2589255576 @default.
- W2890129614 cites W2600975432 @default.
- W2890129614 cites W2605359214 @default.
- W2890129614 cites W2607935580 @default.
- W2890129614 cites W2736633948 @default.
- W2890129614 cites W2784025535 @default.
- W2890129614 cites W2889964863 @default.
- W2890129614 cites W2900326146 @default.
- W2890129614 cites W2962950337 @default.
- W2890129614 cites W2963011882 @default.
- W2890129614 cites W2963278718 @default.
- W2890129614 cites W2963377935 @default.
- W2890129614 cites W2963460857 @default.
- W2890129614 cites W2963466847 @default.
- W2890129614 cites W2963559058 @default.
- W2890129614 cites W2963566548 @default.
- W2890129614 cites W2963570419 @default.
- W2890129614 cites W2963671154 @default.
- W2890129614 cites W2963721882 @default.
- W2890129614 cites W2963839617 @default.
- W2890129614 cites W2964014798 @default.
- W2890129614 cites W2964095005 @default.
- W2890129614 cites W2964171387 @default.
- W2890129614 cites W3099206234 @default.
- W2890129614 cites W3101036461 @default.
- W2890129614 cites W3101227480 @default.
- W2890129614 cites W3101998545 @default.
- W2890129614 doi "https://doi.org/10.1109/tbiom.2019.2908436" @default.
- W2890129614 hasPublicationYear "2019" @default.
- W2890129614 type Work @default.
- W2890129614 sameAs 2890129614 @default.
- W2890129614 citedByCount "104" @default.
- W2890129614 countsByYear W28901296142018 @default.
- W2890129614 countsByYear W28901296142019 @default.
- W2890129614 countsByYear W28901296142020 @default.
- W2890129614 countsByYear W28901296142021 @default.
- W2890129614 countsByYear W28901296142022 @default.
- W2890129614 countsByYear W28901296142023 @default.
- W2890129614 crossrefType "journal-article" @default.
- W2890129614 hasAuthorship W2890129614A5009101133 @default.
- W2890129614 hasAuthorship W2890129614A5010007692 @default.
- W2890129614 hasAuthorship W2890129614A5023195442 @default.
- W2890129614 hasAuthorship W2890129614A5027702007 @default.
- W2890129614 hasAuthorship W2890129614A5033755969 @default.
- W2890129614 hasAuthorship W2890129614A5054079545 @default.
- W2890129614 hasAuthorship W2890129614A5058194061 @default.
- W2890129614 hasAuthorship W2890129614A5067640069 @default.