Matches in SemOpenAlex for { <https://semopenalex.org/work/W2890132714> ?p ?o ?g. }
- W2890132714 endingPage "i646" @default.
- W2890132714 startingPage "i638" @default.
- W2890132714 abstract "Abstract Motivation The complexes formed by binding of proteins to RNAs play key roles in many biological processes, such as splicing, gene expression regulation, translation and viral replication. Understanding protein-RNA binding may thus provide important insights to the functionality and dynamics of many cellular processes. This has sparked substantial interest in exploring protein-RNA binding experimentally, and predicting it computationally. The key computational challenge is to efficiently and accurately infer protein-RNA binding models that will enable prediction of novel protein-RNA interactions to additional transcripts of interest. Results We developed DLPRB (Deep Learning for Protein-RNA Binding), a new deep neural network (DNN) approach for learning intrinsic protein-RNA binding preferences and predicting novel interactions. We present two different network architectures: a convolutional neural network (CNN), and a recurrent neural network (RNN). The novelty of our network hinges upon two key aspects: (i) the joint analysis of both RNA sequence and structure, which is represented as a probability vector of different RNA structural contexts; (ii) novel features in the architecture of the networks, such as the application of RNNs to RNA-binding prediction, and the combination of hundreds of variable-length filters in the CNN. Our results in inferring accurate RNA-binding models from high-throughput in vitro data exhibit substantial improvements, compared to all previous approaches for protein-RNA binding prediction (both DNN and non-DNN based). A more modest, yet statistically significant, improvement is achieved for in vivo binding prediction. When incorporating experimentally-measured RNA structure, compared to predicted one, the improvement on in vivo data increases. By visualizing the binding specificities, we can gain biological insights underlying the mechanism of protein RNA-binding. Availability and implementation The source code is publicly available at https://github.com/ilanbb/dlprb. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2890132714 created "2018-09-27" @default.
- W2890132714 creator A5003229892 @default.
- W2890132714 creator A5037786810 @default.
- W2890132714 creator A5059847817 @default.
- W2890132714 date "2018-09-01" @default.
- W2890132714 modified "2023-10-06" @default.
- W2890132714 title "A deep neural network approach for learning intrinsic protein-RNA binding preferences" @default.
- W2890132714 cites W1019830208 @default.
- W2890132714 cites W1501531009 @default.
- W2890132714 cites W1559047570 @default.
- W2890132714 cites W1951403192 @default.
- W2890132714 cites W1974454061 @default.
- W2890132714 cites W1978883675 @default.
- W2890132714 cites W2003993220 @default.
- W2890132714 cites W2019381697 @default.
- W2890132714 cites W2033169664 @default.
- W2890132714 cites W2040356728 @default.
- W2890132714 cites W2040870580 @default.
- W2890132714 cites W2053003053 @default.
- W2890132714 cites W2064675550 @default.
- W2890132714 cites W2081164083 @default.
- W2890132714 cites W2082102894 @default.
- W2890132714 cites W2086561953 @default.
- W2890132714 cites W2101025813 @default.
- W2890132714 cites W2103375140 @default.
- W2890132714 cites W2105694586 @default.
- W2890132714 cites W2112796928 @default.
- W2890132714 cites W2127982146 @default.
- W2890132714 cites W2132863465 @default.
- W2890132714 cites W2144015117 @default.
- W2890132714 cites W2148032724 @default.
- W2890132714 cites W2149769193 @default.
- W2890132714 cites W2198606573 @default.
- W2890132714 cites W2257979135 @default.
- W2890132714 cites W2307041907 @default.
- W2890132714 cites W2345512687 @default.
- W2890132714 cites W2419834209 @default.
- W2890132714 cites W2433743436 @default.
- W2890132714 cites W2502949459 @default.
- W2890132714 cites W2560785030 @default.
- W2890132714 cites W2592216350 @default.
- W2890132714 cites W2691563344 @default.
- W2890132714 cites W2737196618 @default.
- W2890132714 cites W2950463913 @default.
- W2890132714 cites W4255885670 @default.
- W2890132714 doi "https://doi.org/10.1093/bioinformatics/bty600" @default.
- W2890132714 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30423078" @default.
- W2890132714 hasPublicationYear "2018" @default.
- W2890132714 type Work @default.
- W2890132714 sameAs 2890132714 @default.
- W2890132714 citedByCount "63" @default.
- W2890132714 countsByYear W28901327142017 @default.
- W2890132714 countsByYear W28901327142019 @default.
- W2890132714 countsByYear W28901327142020 @default.
- W2890132714 countsByYear W28901327142021 @default.
- W2890132714 countsByYear W28901327142022 @default.
- W2890132714 countsByYear W28901327142023 @default.
- W2890132714 crossrefType "journal-article" @default.
- W2890132714 hasAuthorship W2890132714A5003229892 @default.
- W2890132714 hasAuthorship W2890132714A5037786810 @default.
- W2890132714 hasAuthorship W2890132714A5059847817 @default.
- W2890132714 hasBestOaLocation W28901327141 @default.
- W2890132714 hasConcept C104317684 @default.
- W2890132714 hasConcept C108583219 @default.
- W2890132714 hasConcept C119857082 @default.
- W2890132714 hasConcept C154945302 @default.
- W2890132714 hasConcept C41008148 @default.
- W2890132714 hasConcept C41282012 @default.
- W2890132714 hasConcept C54355233 @default.
- W2890132714 hasConcept C54458228 @default.
- W2890132714 hasConcept C67705224 @default.
- W2890132714 hasConcept C70721500 @default.
- W2890132714 hasConcept C86803240 @default.
- W2890132714 hasConceptScore W2890132714C104317684 @default.
- W2890132714 hasConceptScore W2890132714C108583219 @default.
- W2890132714 hasConceptScore W2890132714C119857082 @default.
- W2890132714 hasConceptScore W2890132714C154945302 @default.
- W2890132714 hasConceptScore W2890132714C41008148 @default.
- W2890132714 hasConceptScore W2890132714C41282012 @default.
- W2890132714 hasConceptScore W2890132714C54355233 @default.
- W2890132714 hasConceptScore W2890132714C54458228 @default.
- W2890132714 hasConceptScore W2890132714C67705224 @default.
- W2890132714 hasConceptScore W2890132714C70721500 @default.
- W2890132714 hasConceptScore W2890132714C86803240 @default.
- W2890132714 hasIssue "17" @default.
- W2890132714 hasLocation W28901327141 @default.
- W2890132714 hasLocation W28901327142 @default.
- W2890132714 hasLocation W28901327143 @default.
- W2890132714 hasOpenAccess W2890132714 @default.
- W2890132714 hasPrimaryLocation W28901327141 @default.
- W2890132714 hasRelatedWork W3014300295 @default.
- W2890132714 hasRelatedWork W3164822677 @default.
- W2890132714 hasRelatedWork W4223943233 @default.
- W2890132714 hasRelatedWork W4225161397 @default.
- W2890132714 hasRelatedWork W4250304930 @default.
- W2890132714 hasRelatedWork W4312200629 @default.
- W2890132714 hasRelatedWork W4360585206 @default.